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Abstract

ZABAIKINA, Iryna. Hybrid gene expression models [dissertation thesis]. Comenius
University Bratislava. Faculty of Mathematics, Physics and Informatics; Depart-
ment of applied mathematics and statistics. Supervisor: doc. Mgr. Pavol Bokes,
PhD.. Bratislava, 2024.

Regulation of gene expression is represented by a variety of control motifs, math-
ematical models of which can provide a theoretical estimate of the process parame-
ters. In this project, we study three particular examples of regulatory networks. The
first one is negative feedback when mRNA indirectly inhibits its production. The
second one is an incoherent feed-forward loop, which is represented by the interac-
tion between mRNA and antagonistic microRNA. We construct a generalized hybrid
model using a Markovian drift-jump framework with random production bursts and
continuous degradation. Combined with the Chapman-Kolmogorov equation, it pro-
vides the means to determine the probability distribution of mRNA concentration.
We derive the mean steady-state concentration of mRNA for both models. Subse-
quently, we show that it is less sensitive to the production rate in the feed-forward
loop than in the negative feedback. In addition, it turns out that in presence of
the low noise, FFL maintains the concentration of mRNA at a steady level despite
disturbance in production rate, i.e. is perfectly adaptating. Finally, the third one is
the positive feedback on dilution when the protein inhibits cell growth. We model a
single cell using the drift-jump framework, then develop a population model using
a measure-valued Markov process combined with the population balance equation.
We show that this type of regulation causes a difference between single-cell and pop-
ulation protein distributions. We also demonstrate that the nature of the division
mechanism, whether stochastic or deterministic (sizer), does not affect the protein
distribution.

Keywords: gene expression, hybrid model, negative feedback, feed-forward
loop, perfect adaptation, feedback on dilution, population model
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Abstrakt

ZABAIKINA, Iryna. Hybrid gene expression models [dizertačná práca]. Univerzita
Komenského v Bratislave. Fakulta matematiky, fyziky a informatiky; Katedra ap-
likovanej matematiky a štatistiky. Vedúci práce: doc. Mgr. Pavol Bokes, PhD..
Bratislava, 2024.

Regulácia génovej expresie je reprezentovaná rôznymi kontrolújucimi motívmi,
takže ich matematické modely môžu poskytnúť teoretický odhad parametrov pro-
cesu. V tomto projekte skúmame tri konkrétne príklady regulačných sietí. Prvým
príkladom je negatívna spätná väzba, keď mediátorová RNA (mRNA) nepriamo
inhibuje vlastnú syntézu. Druhým príkladom je nekoherentná dopredná slučka,
ktorá je reprezentovaná interakciou medzi mRNA a antagonistickou mikroRNA. Po-
mocou Markovovskeho drift-jump frameworku zostrojíme zovšeobecnený hybridný
model s náhodnými produkčnými pulzmi a spojitou degradáciou. V kombinácii s
Chapmanovou-Kolmogorovovou rovnicou, taký model poskytuje pravdepodobnos-
tné rozdelenie koncentrácie mRNA. Odvodíme priemernú stacionárnu koncentrá-
ciu mRNA pre obidva modely. Následne ukazujeme, že dopredná slučka je menej
citlivá na rýchlosť produkcie ako negatívna spätná väzba. Okrem toho sa ukazuje,
že v prítomnosti nízkeho šumu dopredná slučka udržiava koncentráciu mRNA na
stabilnej úrovni napriek výrazným kolísaniam rýchlosti produkcie, t.j. sa prispô-
sobuje dokonale. Nakoniec, tretím príkladom je pozitívna spätná väzba na zriede-
nie, keď proteín inhibuje rast buniek. Pre modelovanie jednotlivej bunky použi-
jeme drift-jump framework, následne zostrojíme model bunkovej populácie pomo-
cou merateľného Markovovho procesu v kombinácii s rovnicou rovnováhy populácie.
Ukazujeme, že tento typ regulácie spôsobuje rozdiel medzi rozdelením koncentrácie
proteínu v jednotlivej bunke a v populácii. Tiež demonštrujeme, že typ bunkového
delenia, či stochastický alebo deterministický (sizer), neovplyvňuje rozdelenie pro-
teínu.

Kľúčové slová: génová expresia, hybridný model, negatívna spätná väzba, do-
predná slučka, dokonalé prispôsobenie, spätná väzba na zriedenie, model populácie
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Acronyms

DNA deoxyribonucleic acid

RNA ribonucleic acid

RNAp RNA polymerase

mRNA messenger RNA

miRNA microRNA

TF transcriptional factor

UTR untranslated region

FFL feed forward loop

IFFL incoherent feed forward loop

NFB negative feedback

PFB positive feedback

ODE ordinary differential equation

PDE partial differential equation

PDF probability density function

CCDF complementary cumulative distribution function

SC single cell framework

POP population framework

LT Laplace transform

PBE population balance equation

CKDE Chapman-Kolmogorov differential equation
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List of notations

The following list compiles the most commonly used notation in the main text.

Constants and functions

Λ(x) protein-dependent burst frequency

α (constant) burst frequency

β mean burst size

δ hazard rate of mRNA-miRNA interaction

γ (constant) degradation rate

γ(x) protein-dependent degradation rate

λ population growth rate

k feedback intensity

Chemical kinetics

∅ Species are degraded or do not affect the studied system

B Burst production

X The species of interest

Y The auxiliary species (e.g. miRNA)
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Introduction

The cell is the fundamental building block of every living organism, and biochemical
reactions that occur inside it define life at a molecular level. All information about
these reactions is stored encrypted in DNA – a long amino acid chain, which con-
tains functional units called genes. Each gene provides instructions for a functional
product (protein or RNA), which support cell development, adaptation to inner and
outer conditions, proliferating, and overall functionality of a cell and, thus, an or-
ganism. The central process in a cell is gene expression, which is decoding genes and
synthesis of corresponding functional product. It is complex and strictly regulated
mechanism, which is yet to be fully understood.

The aim of this work is to study the gene expression regulation. This dynamic
process is crucial for cellular function and adaptability, and can be observed in the
form of different regulatory circuits. These circuits play a key role in the modulation
of gene activity, allowing cells to respond efficiently to both internal and external
changes. We focus on two types of regulatory mechanisms. First one is a feedback
loop, where the output of a process governs its own activity either inhibiting it (neg-
ative feedback) or enhancing it (positive feedback), which arises at transcriptional
stage [1]–[3], post-translational stage [4], or embedded in cell size control [5]. Second
one is a feed-forward loop, in which input signal enhances output signal through one
path and dampens it through another one.

Advance of experimental techniques allows to expand our knowledge of the in-
tracellular reactions. First, they improve experimental data quality, which allows
to either build more precise models or validate existing ones. Second, they made
possible to reveal previously unknown aspects of cellular mechanisms. Finally, they
provide not only theoretical data, but also practical information on disease progres-
sion and treatment outcomes at the cell level. Thus, understanding and altering
regulation of gene expression are useful for such applied fields as synthetic biology
and pharmacogenomics, which are based on results from both mathematical models
and practical sides of research of gene expression. Synthetic biology uses predictions
by mathematical models to validate hypotheses before costly empirical tests. At
the same time, mathematical models can reveal features and characteristics, which
may help in identifying regulatory loops in experimental data. Gene expression has
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significant role in in drug response [6], [7]; understanding the influence of regulation
on both single cell and cell colony can help explain how diseases affect expression
of certain genes, predict population-wide treatment outcomes [8], and address drug
tolerance issues [9]. Overall, integrative approach not only advances theoretical un-
derstanding but also enhances laboratory practices by informing experiment design
and interpretation.

Extensive research has already been conducted in the field of gene expression reg-
ulation, employing a variety of modelling techniques to uncover different aspects of
regulatory networks. Fundamentally, there are the following principal approaches.
The deterministic approach uses chemical kinetics to provide the framework for
quantifying the rates of chemical reactions within these models; it results into sys-
tems of ordinary differential equations. Dynamical systems are used to capture
key features of the process based on experimental data [10] and steady state be-
haviour [11], [12]. The key assumption in these models is that the involved species
are well-mixed and molecular interactions occur uniformly throughout the cellular
environment. It is also their weak side, since it might not be true in cases of spatial
heterogeneity or low molecule numbers where stochastic effects are significant.

Discrete stochastic models allow to explore gene expression at the level of indi-
vidual events and interactions, which is valuable in case of gene expression, where
stochastic effects play a critical role. The temporal evolution of species in such sys-
tems is expressed in terms of a chemical master equation (CME) [13], [14]. A major
solution method is the Linear Noise Approximation (LNA), which is widely used for
quantifying gene expression noise [15]–[17].

Finally, in this work we focus on hybrid models, in particular on ones based
on the piecewise deterministic Markov process [18]. They typically model the pro-
cess as mainly deterministic with random discrete events that change the system’s
state, like gene switching [19], [20], and bursty production [21]. This approach can
also be successfully extended to explore cell populations [22]–[24] without a drastic
expansion of the model.

The work is structured as follows. In Chapter 1 we provide a detailed overview
of the biological side of the work; we describe biochemical mechanisms that un-
derlie such regulatory circuits as transcriptional autoregulation, feed-forward loop,
and feedback on cellular growth dilution. In the Chapter 2, we develop the mathe-
matical background for the following work. This chapter begins with mathematical
constructions, which are frequently used throughout the work. Specifically, Sec-
tions 2.2 and 2.1 are about the Laplace transform and special functions, respectively.
In Sections 2.3–2.5 we build the general framework. We start with an evolution of
a probability density function in a deterministic system. Afterwards, we extend it
with random jumps and derive a general master equation for a single cell. Next, we
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introduce population framework and the population balance equation. The follow-
ing chapters are dedicated to specific regulatory circuits. In Chapter 3, we study the
feedback on burst frequency in single cell and population models. In Chapter 4, we
study the behaviour of the feed-forward loop in a low-noise regime (when the species
are produced in small and frequent bursts). This is followed by an analysis of a gen-
eral model in a steady state, and a conclusion that summarises our current results.
Finally, in last two chapters we study the model of the cell, in which the cell growth
rate is affected by the presence of a certain protein. In Chapter 5, we study the case
of a protein that inhibits the cell growth. The higher protein concentrations is, the
slower the cell expansion becomes, which preserves higher protein concentrations;
hence, positive feedback occurs. We construct and analyse both standard model
of protein concentration and a bivariate model, which includes the cell volume. In
Chapter 6, we consider the opposite case with negative feedback on dilution. In last
chapter, we discuss results, limitations and future directions of the research.

3





Chapter 1

Biological background

Gene expression

A cell life cycle is primarily governed by changes in a wide variety of functional
products, which are predominantly proteins, along with various types of ribonucleic
acids (RNAs). These molecules are crucial for carrying out essential activities such
as cell growth, division, response to external changes, storing and production of
energy, etc.

Deoxyribonucleic acid (DNA) is central molecule in each living cell that stores
all information about the structure of functional products and instructions for their
usage. Structurally, DNA is a double helix, each strand of which consists of building
bases called nucleotides : adenine (A), cytosine (C), guanine (G), and thymine (T).
The base pairs (A) ⇄ (T) and (C) ⇄ (G) are mutually complementary, e.g. if one
strand contains a sequence (ACTG), then the other one contains (TGAC).

A segment of DNA that contains the complete instructions for building a spe-
cific protein or RNA is called a gene. This region (or regions) includes all elements
necessary to encode a functional molecule: a directly coding region, regulatory
sequences (including promoter and termination signal), and auxiliary non-coding
parts [25], [26]; a scheme of a gene is shown in Figure 1.1.

Gene expression is the process, during which the information in the gene is de-
coded and used to manage the synthesis of a gene product. This process is intricate;
some optional steps can differ significantly across different organisms, cell types,
external and internal conditions [27]. However, the following three consistent steps
are mainly obligatory [28] for protein synthesis:

• transcription (where separate copy of a gene – mRNA – is produced);
• translation (where mRNA serves as a template for protein synthesis);
• post-translational modifications (where protein becomes active).
Let us take a closer look at each of aforementioned processes. The transcription

begins at a promoter, which determines the starting site, as shown in Figure 1.1. It
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codon 

Transcribed 

Translated 

Figure 1.1: Structural parts of the gene in DNA, which are involved in different
steps of producing proteins (the figure was created with BioRender.com)

can typically be in two states: active, where it is accessible to the specific transcrip-
tion machinery called RNA polymerase (RNAp), or inactive, where it is inaccessible
and transcription. When RNA polymerase binds to DNA, gene expression is initi-
ated. First, RNAp unwinds the DNA strands, providing access to the single strand,
which serves as a template for further synthesising a complementary RNA chain.
Then the elongation begins: RNAp moves along the DNA strand, reads one base
and adds one complementary base at a time. The complementary rules are similar
to ones above, except it adds urasil (U) instead of (T). Behind the advancing RNA
polymerase, DNA naturally rewinds back into its stable structure of a double helix.
When the termination signal is reached, RNAp detaches from DNA and releases a
produced molecule – messenger RNA (mRNA) – into a cellular space.

After transcription is finished, mRNA is delivered via mobile export receptors to
a ribosome, where translation is performed [29]. This means that the ribosome uses
mRNA as a template to produce an amino acid chain of the gene product. More pre-
cisely, only a part of mRNA between start and stop codons is directly translated, it is
marked with the green arrow in Figure 1.1). untranslated regions (UTRs) play criti-
cal roles in regulating the efficiency and stability of this process, thereby influencing
the amount of protein produced. Intense translation of the mRNA molecule lasts
until it degradation. These short periods are called translational bursts, throughout
which a random number of the amino acid chains are synthesised.

The last step is a post-translational modification, within which the amino acid
chains undergo changes affecting their structure, location, or stability. After the
protein or RNA is used follows their elimination. The process is called degradation,
during which the functional product is split into single amino acids or smaller amino
acid chains because of time or enzymes.

Each of these steps is tightly regulated by a complex network of signalling path-
ways and regulatory proteins, ensuring that the right genes are expressed at the
right times and in the right amounts.

6



Figure 1.2: Scheme of the protein synthesis with implemented negative au-
toregulation; bold arrows correspond to the set reactions studied in Section 3
(inhibiting arrow corresponds to the regulatory function Λ(x)).

Regulation using transcriptional factor (TF)

Direct way to regulate the amount of protein is to control its mRNA concentration
in a cell by changing accessibility of the promoter to RNA polymerase. There are
two principal ways of implementation: altering chemical structure of the promoter
or using auxiliary molecules, which can influence promoter accessibility. We focus on
a second one, specifically on proteins called transcriptional factors (TFs); depending
on the type, they can enhance, reduce, or stop gene transcription. They implement
a regulatory mechanism called feedback; its fundamental principle is self-regulation.
At the transcriptional stage, positive feedback (PFB) implies that a protein enhances
its own transcription to increase its concentration in the cell; negative feedback
(NFB) implies the capability of the protein to reduce the rate of its own expression
by preventing transcription [30]. This dynamic balance ensures that protein levels
within the cell can quickly response to changing internal and external conditions.

We focus on a particular case of proteins that are inhibitory transcriptional
factors for their own gene promoter; thereby, production explicitly depends on the
current concentration of the protein in the cell (Figure 1.2).

Many properties, which are provided by the feedback loop (speed of response, sus-
tained mean concentration, etc.), are characterised by its response function, which
determines the transcription rate of the gene as a function of the protein concen-
tration in the cell. Many studies use a sigmoid response function, such as Hill
function [31]. The feedback loop may be implemented in different ways; the most
widely arising are reducing the frequency of bursts or mean size of bursts [32]. For
example, the response function affects the concentration via frequency in the follow-
ing way: if the protein concentration is currently high, then the frequency of bursts
decreases or even becomes zero. Otherwise, as concentration decreases, bursts occur
more frequently.
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Figure 1.3: Scheme of the protein life cycle, which is regulated by miRNA; bold
arrows correspond to the set reactions studied in Section 4 (the figure was created
with BioRender.com).

Regulation using feed forward loop (FFL)

Another type of regulatory circuits was found after qualitative improvement of lab-
oratory technologies, which gave specific information about presence of auxiliary
gene products [33], [34]. In particular, it was discovered that some RNAs, called
non-coding RNA, are released into the cell immediately after transcription, avoiding
further stages of processing. Mainly, they have support functions such as transfer-
ring amino acids (tRNA), forming ribosomes (rRNA), supporting splicing (snRNA),
maintaining spermatogenesis (piRNA) [35]–[37].

Our topic of interest is micro RNA (miRNA) – short (approximately 21 nu-
cleotides) non-coding RNA, which is engaged in transcriptional and post-transcrip-
tional regulation of gene expression [38], [39]. Each miRNA is complementary, i.e.
has perfect pairing, to a specific type of an untranslated region (UTR) of an mRNA
molecule [40], [41]. MiRNA recognises the target UTR and binds to it, causing
degradation or suppressing further translation of the mRNA molecule (Fig. 1.3).
In essence, microRNAs can be classified into two fundamental types based on the
genomic location of their coding sequence. Intergenic miRNAs are located in the
non-coding regions in between protein-coding sequences and have their own pro-
moter; thus, they are usually transcribed independently [42], [43]. Intragenic miR-
NAs, which are located in the intron (intronic miRNA) or the exon (exonic miRNA)
of host genes, are co-transcribed in a long transcript precursor (pre-mRNA) and
then spliced into separate molecules [44]. In this work, we focus on the intronic
miRNAs, the specific role of which is to directly regulate the production of the host
gene [45], [46].

A feed forward loop (FFL) is a frequently arising control motif in gene regulatory
networks [47]. Its basic principle is to anticipate external disturbance in a controlled
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Figure 1.4: Scheme of the protein life cycle, which is positively regulated by
dilution rate; bold arrows correspond to the set reactions studied in Section 5.

quantity and immediately provide a counter balancing response. A subtype of FFL,
called incoherent FFL (IFFL), appears when a controlled quantity Z is amplified
by X and dampened by Y indirectly through X. The miRNA-mRNA interaction
is also an IFFL, since an upstream transcriptional activator amplifies the level of
mRNA directly and at the same time dampens it indirectly through amplification
of its miRNA antagonist [48]. In particular, it is present in transcriptional networks
of S. cerevisiae [49] and E. coli [50], [51]. This control motif was modelled as a
deterministic system and proved to be perfectly adaptating [19], [52], i.e IFFL retains
expression at a required level regardless of the strength of an upstream signal.

Regulation on cell growth (dilution)

The aforementioned regulatory mechanisms are based on intermolecular interactions
between functional products during gene expression process. Studies show that
decrease in the protein amount can also be regulated. There are two principal
approaches: degrade (or deactivate) molecule of a protein and affect the protein
concentration in a cellular environment.

The first approach has different implementations. Damaged proteins can be
tagged for degradation, then they become target for proteasome – special molecu-
lar mechanism that efficiently degrades proteins [53], [54]. The cell can isolate and
deactivate unwanted cellular contents using double lipid membranes. These mech-
anisms are usually applied to short-lived, heavily damaged [55], [56], and harmful
molecules [57].

The second approach to control decay of protein concentration is to manage the
cell growth rate and thus rate of protein dilution. The main idea is that the intense
protein production affects the rate at which the cell can grow or expand its volume.
Typical assumption is that cell is growing exponentially, but the level of a certain
protein impacts cell volume growth so it becomes almost linear.

We consider on the case where high protein levels inhibit cell growth. This
effect can have various causes, such as protein burden [5], protein-induced stress
response [58], and exhaustion of metabolic machinery (i.e., less energy and materials
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are available for growth) [59]–[61].
This effect is modelled as a positive feedback mechanism: the more of this pro-

tein there is, the slower the cell grows, preserving higher protein concentration.
Finally, in this positive feedback scenario, low-protein cells proliferate faster than
high-protein cells; it is therefore important to distinguish between the single cell
(genealogy) framework and the population framework [62]–[64].
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Chapter 2

Mathematical background

In this chapter we introduce some preliminary mathematical background for this
work. Section 2.1 contains definitions and properties of the special functions, which
might be useful for understanding some parts of a solution approach; in Section 2.2
we provide information about the Laplace transform and double Laplace transform.
Throughout Sections 2.3–2.5 we consequentially develop the the single cell and pop-
ulation frameworks. We proceed from the evolution of a probability density function
in dynamical systems, then drift-jump framework and finally to the population bal-
ance equation. In the last Section 2.6, we present the basic model of the unregulated
gene expression, which is fundamental model for each of the following chapters.

2.1 Special functions

In this section we provide definitions, relations and/or integral representations of
functions that are mentioned in the text. Special functions do not have a formal
definition, but it is a common name for a set of different classes of functions that
occur as solutions of both theoretical and applied mathematical problems. They can-
not be represented using elementary functions, but as power series, infinite products,
integrals, repeated differentiation, etc.

2.1.1 Gamma function and related concepts

Definition 2.1. Let z be a complex number with positive real part. Then the gamma
function is absolutely convergent improper integral:

Γ(z) =

∫ ∞

0

tz−1e−t dt , z ∈ C, Re(z) > 0. (2.1)

Gamma function is the generalisation of the integer factorial, so it satisfies the
recurrent relation Γ(z+1) = zΓ(z). This relation also provides an analytical contin-
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uation of the domain of Γ(z) to the whole complex plane except negative integers,
where it has simple poles. In case z ∈ N, it reduces to the factorial function, i.e.,
Γ(z) = (z − 1)!.

Definition 2.2. Let a ∈ C \ Z≤0 and k ∈ N. Then we define the Pochhammer
symbol:

(a)k =
Γ(a+ k)

Γ(a)
, (a)0 = 1. (2.2)

Definition 2.3. Let s be a complex number with positive real part and let x be a
non-negative real number. Then lower incomplete gamma function γ(a, x) and the
upper (complementary) incomplete gamma function Γ(a, x) are defined as follows:

γ(a, x) =

∫ x

0

ta−1e−t dt , (2.3)

Γ(a, x) =

∫ ∞

x

ta−1e−t dt . (2.4)

The functions γ(a, x) and Γ(a, x) are generalisations of the gamma function Γ(x)

obtained by splitting integral limits in (2.1) at a point x ≥ 0; clearly, it yields
Γ(a, x) + γ(a, x) = Γ(a).

Property 2.1. The incomplete gamma function has the following properties [65]:

(a) Recurrence relation:

γ(a+ 1, x) = aγ(a, x)− xae−x,

Γ(a+ 1, x) = aΓ(a, x) + xae−x,

which allows to extend domain for parameter a to C \ Z≤0.

(b) Special values: Γ(a, 0) = Γ(a), γ(1, x) = 1− e−x, and Γ(1, x) = e−x.

(c) Differentiation with respect to x:

∂γ(a, x)

∂x
= xa−1e−x,

∂Γ(a, x)

∂x
= −∂γ(a, x)

∂x
.

(d) Series expansion:

γ(a, x) = xaΓ(a)e−x
∞∑
k=0

xk

Γ(x+ k + 1)
. (2.5)

Definition 2.4. Let z be any complex number with positive real part. Then the
exponential integral is defined as:

E1(z) =

∫ ∞

z

e−t

t
dt , |Arg(z)| < π. (2.6)
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The exponential integral of a real non-negative value x:

Ei(x) = −
∫ ∞

−x

e−t

t
dt , x ∈ R > 0. (2.7)

From (2.6) and (2.7) follows the relation E1(x) = −Ei(−x).

Comparing definitions (2.4) and (2.6), it is clear that the exponential integral is
a special case of the upper incomplete gamma function:

E1(z) = Γ(0, z). (2.8)

Thus, it inherits all of aforementioned properties of Γ(a, x).

2.1.2 Bessel functions

Definition 2.5. The Bessel differential equation of order ν is following:

z2
d2w

dz2
+ z

dw

dz
+ w(z2 − ν2) = 0, ν ∈ C. (2.9)

The Frobenius method is used to solve this equation, i.e., the solution has the power
series form:

w(x) =
∞∑
r=0

arz
α+r, a0 ̸= 0, (2.10)

substitution of which into (2.9) provides that α = ±ν, a0 is any constant, and further
coefficients ar are given by recurrent relation:

(2ν + 1)a1 = 0, ar−2 = −r(2ν + r)ar, ∀r ≥ 2. (2.11)

Then we obtain the first fundamental solution of (2.9) called the Bessel function of
the first kind.

Definition 2.6. The Bessel function of the first kind, denoted as Jν(z), is defined
for a complex variable z by convergent power series [66]:

Jν(z) =
∞∑
r=0

(−1)r(z/2)ν+2r

r!Γ(ν + r + 1)
, ν ∈ C. (2.12)

If ν is not an integer, Jν and J−ν are linearly independent and the solution of (2.9):

w(z) = C1Jν + C2J−ν .

Otherwise, as ν ∈ Z, they are linearly dependent, because J−ν = (−1)nJν . The
second fundamental solution of (2.9) is the Bessel function of the second kind.
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Definition 2.7. The Bessel function of the second kind, denoted as Yν(z) is defined
as follows:

Yν(z) =
cos(νπ)Jν(z)− J−ν(z)

sin(νπ)
, ∀ν ∈ C \ Z. (2.13)

In case of integer order n, Yn(z) is defined by the limit Yn(z) = limν→n Yν(z).

Then the general solution of the Bessel’s equation of any order ν (2.9) is following:

w(z) = C1Jν + C2Yν .

Although the Bessel functions are convergent, they are oscillatory. Thus were
developed the modified Bessel functions, which are particularly suited to applications
where the solutions are real and involve exponential growth or decay. They arise
from the modified Bessel differential equation [67]:

z2
d2w

dz2
+ z

dw

dz
− w(z2 + ν2) = 0, ν ∈ C. (2.14)

The modified Bessel function of the first kind of order ν is

Iν(z) := i−νJν(iz) =
∞∑
r=0

(z/2)ν+2r

r!Γ(ν + r + 1)
. (2.15)

Iν(z) is defined for all any z ∈ C. The function Iν(z) is always positive for real
positive z and grows exponentially as x increases. For any positive ν, Iν(0) = 0 and
has the following asymptotic behaviour for small z:

Iν(z) ≈
(z/2)ν

Γ(ν + 1)
.

Note that Iν and I−ν are essentially multiples of Jν and J−ν , respectively. They
are linearly independent in case of non-integer order and form a set of fundamental
solutions of (2.14). Otherwise, for the same reason as in (2.13), we present the
modified Bessel function of the second kind Kν(z) and the general solution of (2.14)
is given by

w(z) = C1Iν(z) + C2Kν(z).

Definition 2.8. The modified Bessel function of the second kind, denoted as Kν(z)

is defined as follows:

Kν(z) =
π

2

I−ν(z)− Iν(z)
sin(νπ)

, ∀ν ∈ C \ Z. (2.16)

In case of integer order n, Kn(z) is defined by the limit Kn(z) = limν→nKν(z).

The function Kν is symmetrical with respect to ν (Kν = K−ν) and always positive
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for positive real z. It has singularity at z = 0 and converges to zero, as z increases.
In Chapter 6, we are interested in such integral representations of Kν that can be

expressed as a Laplace image of a real-valued function according to Definition 2.11;
we provide the following:

Kν(z) =
(z/2)ν

2

∫ ∞

0

t−ν−1e−t−z
2/4t dt , (2.17)

which is the fundamental one in this context, because further representations are
mainly based on its transformations (see [68] based on [69]).

2.1.3 Hypergeometric function

Definition 2.9. The Gauss’ hypergeometric differential equation is a second-order
linear ordinary differential equation given by

x(1− x)d
2y

dx2
+ (c− (a+ b+ 1)x)

dy

dx
− aby = 0, a, b, c ∈ C, c ̸∈ Z≤0. (2.18)

The following solution of the hypergeometric equation is obtained using the Frobe-
nius method (2.10), as it was done for the Bessel equation in the previous section.

Definition 2.10. The hypergeometric function, denoted as 2F1(a, b; c;x), is defined
for a complex variable x, where |x| < 1, by the power series:

2F1(a, b; c;x) =
∞∑
n=0

(a)n(b)n
(c)n

xn

n!
, a, b, c ∈ C, c ̸∈ Z≤0,

where (·)n is the Pochhammer symbol (2.2).

This series converges absolutely for |x| < 1. However, the function 2F1(a, b; c;x) can
be analytically continued for |x| ≥ 1, extending its domain beyond the unit circle in
the complex plane.

Property 2.2. The hypergeometric function 2F1 has the following properties [69]:

(a) Symmetry: 2F1(a, b, c;x) = 2F1(b, a, c;x).

(b) Argument transformation:

(1− x)a+b−c 2F1(a, b, c;x) = 2F1(c− a, c− b, c;x).

(c) Differentiation with respect to x:

dn

dxn
2F1(a, b, c;x) =

(a)n(b)n
(c)n

2F1(a+ n, b+ n, c+ n;x).
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(d) Integral representation:

2F1(a, b, c;x) =
1

B(b, c− b)

∫ 1

0

tb−1(1− t)c−b−1(1− tx)−a dt ,

where the beta function B given by the integral B(a, b) =
∫ 1

0
ta−1(1− t)b−1 dt.

(e) Special values:

2F1(0, b, c;x) = 1,

2F1(−1, b, c;x) = 1− bx

c
.

If c = b + 1, the integrand in Property 2.2(d) contains only two power functions
and the beta function becomes a fraction, i.e., B(b, 1) = 1/b. Then we perform
substitutions y = tu and x = −κu and obtain [69]:

2F1(a, b, b+ 1;−κu) = b

ub

∫ u

0

yb−1

(κy + 1)a
dy ,

Re{b} > 0, | arg(κu+ 1)| < π.

(2.19)

2.2 Laplace transform

The principal difficulty in studying drift-jump dynamics appearing in Sections 2.4–
2.5 stems from the nonlocal character of the influx term Jin, which in many appli-
cations takes the form of an n-dimensional convolution. This clearly motivates the
use of the Laplace transform (LT), under which the (nonlocal) convolution is turned
into a (local) multiplication operator. In this section we review the well-known and
lesser-known properties of the Laplace transform, which are used in this work.

2.2.1 Single Laplace transform

Definition 2.11. Let f(t) be a integrable function on [ 0,∞). The (unilateral)
Laplace transform of f(t) is the function F (s), which is given by [70]:

F (s) = L{f(t)}(s) =
∫ ∞

0

f(t)e−st dt .

The Laplace transform is a unique relation between real-valued function f(t),
co-called the original function and its image F (s); this and further details concern
only functions, for which Laplace transform exists. Let us introduce possible ways
to determine it [71].
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Theorem 2.1. Sufficient conditions of the Laplace transform existence.
The Laplace transform of f(t) exists in sense of absolute convergence, if:

(a)
∫∞
0
|f(t)| dt exists;

(b) f(t) is of exponential order O(eat) as t→∞, provided Re(s) > a.

Property 2.3. Let f(t) and g(t) be integrable and bounded functions on [ 0,∞) and
their Laplace transforms F (s) and G(s) exist in sense of absolute convergence. Then
the following properties are valid for a, b ∈ R:

(a) Linearity:

L{af(t) + bg(t)}(s) = aL{f(t)}(s) + bL{g(t)}(s).

(b) Time scaling:

L{f(at)}(s) = 1

a
L{f(t)}(s

a
).

(c) Complex (image) shifting:

L{f(t)e−at}(s) = L{f(t)}(s+ a).

(d) Laplace transform derivative:

L{tnf(t)}(s) = (−1)nL(n){f(t)}(s).

Property 2.4. The Laplace transform of probability density function of selected
distributions [72].

(a) Let p(x) be a probability density function (PDF) of an exponential distribution
with mean β:

p(x) =
1

β
e−x/β,

then
P (s) = L[p](s) = 1

sβ + 1
.

(b) Let p(x) be a PDF of a gamma distribution with shape a and scale b:

p(x) =
1

Γ(a)ba
e−x/bxa−1,

then
P (s) = L{p(x)} = 1

(sb+ 1)a
.

Definition 2.12. A function f(t) is called the inverse Laplace transform if it is
continuous on [0,∞) and for a given F (s) it satisfies:

F (s) = L[f(t)](s).
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It is then denoted as f(t) = L−1{F (s)}(t).

Definition 2.13. The convolution of two functions f(t) and g(t) with non-negative
support is denoted as (f ∗ g)(t) and defined as a proper integral:

(f ∗ g)(t) =
∫ t

0

f(t− τ)g(τ) dτ , f, g : [0,∞)→ R.

Theorem 2.2. Let f(t) and g(t) be integrable and bounded functions on [0,∞),
whose Laplace transforms are absolutely convergent, then

L{(f ∗ g)(t)}(s) = L{f(t)}(s)L{g(t)}(s).

2.2.2 Double Laplace transform

Since there are two state variables in our model (which is described in details in
Section 4), it is reasonable to introduce the double Laplace transform, which is a
natural extension of the single-variable Laplace transform.

Definition 2.14. Let f(x, y) be a function of two variables x and y defined in the
first quadrant of R2. The double Laplace transform of f(x, y) is defined by the double
integral in the form:

F (ϕ, ψ) = L2{f(x, y)}(ϕ, ψ) =
∫ ∞

0

∫ ∞

0

f(x, y)e−xϕ−yψ dx dy .

A sufficient condition for existence of the integral in Definition 2.14 is following:
if f(x, y) is a continuous function in every finite intervals (0, X) and (0, Y ) and of
exponential order O(eax+by), then F (ϕ, ψ) exists for all ϕ and ψ provided Re(ϕ) > a

and Re(ψ) > b [73]. If this condition is met, by analogy with Theorem 2.1, it also
implies absolute convergence of the integral.

As follows from the definition, F (ϕ, ψ) could be equivalently obtained through
consistently applying the single Laplace transform twice; that is why it inherits Prop-
erty 2.3. The remaining part of the section is devoted to lesser known properties,
which will be needed.

Property 2.5. Let f(x, y) be a function of two non-negative variables, such that
L2f(x, y)(ϕ, ψ) exists, then the following properties are valid [74]:

(a) Double Laplace transform of an integral:

L2

{∫ x

0

∫ y

0

f(u, v) du dv

}
(ϕ, ψ) =

1

ϕψ
F (ϕ, ψ), ϕ > 0, ψ > 0.

18



(b) Partial derivative of double Laplace transform:

L2{xnymf(x, y)}(ϕ, ψ) = (−1)n+m ∂n+m

∂ϕnψm
F (ϕ, ψ), n,m ∈ N.

The convolution of f(x, y) and g(x, y) is denoted as (f ∗ ∗ g)(x, y) is and defined
as a double integral:

(f ∗ ∗ g)(x, y) =
∫ x

0

∫ y

0

f(x− ξ, y − ν)g(ξ, ν) dν dµ .

Theorem 2.3. Let f(x, y) and g(y) be integrable in the positive quadrant functions,
such that L2{f(x, y)} and L2{g(x, y)} are absolutely converging, then

L2 {(f ∗ ∗g)(x, y)} (ϕ, ψ) = L{f}(ϕ, ψ)L{g}(ϕ, ψ).

We define a convolution about axis as the following proper integral [75]:

f ∗
a b
g =

∫ M

0

f(x− aν, y − bν)g(ν) dν , where M = min{x
a
,
y

b
},

where parameters a and b are positive constants.

Theorem 2.4. Let f(x, y) and g(y) be integrable in the positive quadrant functions,
such that L2{f(x, y)} converges boundedly and L{g(x)} converges absolutely, then

L2

{
f ∗
a b
g
}
(ϕ, ψ) = L[f ](ϕ, ψ)L[g](aϕ+ bψ).

2.3 Liouville equation

Piecewise deterministic processes will be described, in the section to follow, in term
of integro-differential equations for the underlying probability distributions. As
the first step toward formulating such equations, we investigate in this section the
density evolution of purely deterministic processes.

Consider an initial value problem modeling deterministic decay

ẋ = −x, x(0) = x0,

with a solution
x(t) = x0e

−t.

In the present context, the variable x can represent concentration of a protein that
is continually depleted by the action of enzymes, which break down proteins. If
x0 is drawn randomly from a continuous distribution with a probability density
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function f0(x), then x(t) is random too, and its probability density function, by the
transformation rule, is given by

f(x, t) = etf0(e
tx).

Direct calculations confirm that f(x, t) satisfies:

∂

∂t
f(x, t)− ∂

∂x
(xf(x, t)) = 0, f(x, 0) = f0(x).

More generally, the density evolution for

ẋ = a(x, t), x(0) = x0

is given by the Liouville equation [76]:

∂

∂t
f(x, t) +

∂

∂x
(a(x, t)f(x, t)) = 0, f(x, 0) = f0(x). (2.20)

We proceed with generalization of the equation (2.20) to an n−dimensional space.
If x = (x1, . . . , xn) ∈ Rn and A : Rn × R→ Rn, then the densities in a dynamical
system:

ẋ = A(x, t), x(0) = x0

are evolved as per

∂f

∂t
+∇ ·A(x, t)f = 0, f(x, 0) = f0(x).

2.4 Drift jump framework

We consider a Markov process with drift and jumps to be the most fitting framework
for modeling gene expression, it captures stochastic and deterministic mechanics of
the process and suitable for implementing various regulatory circuits. First, we
assume that a deterministic motion x = x(t) in the process is driven by a dynamical
system:

ẋ(t) = A(x(t), t), A : Rn×[0,+∞)→ Rn. (2.21)

On the other hand, random jumps are governed by a random process B(t), such
that a conditional probability to jump from x′ to x = x′ + b in a infinitesimal time
interval of length ∆t is

Pr{B(t) ∈ [b;b+ db] |x(t) = x′} = ω(b|x′, t) db , (2.22)
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which we will refer to as a jump kernel. Then the trajectory of the described process
is [76]:

x(t+∆t) =

x(t) +A(x, t)∆t, w.p. 1− λ(x, t)∆t

x(t) +A(x, t)∆t+B(t), w.p. λ(x, t)∆t,
(2.23)

where λ(x, t) is a function of a jump rate. Thus, particles can either proceed drifting
along solutions of A or perform the random jump. Then a joint probability density
function of the vector x(t) is governed by the Chapman-Kolmogorov differential
equation (CKDE) [77]:

∂

∂t
p(x, t) = −

n∑
i=1

∂

∂xi
(Ai(x, t)p(x, t))− λ(x, t)p(x, t) + Jin(x, t), (2.24)

where Jin(x, t) is given by

Jin(x, t) =

∫
Rn

λ(x′, t)ω(x− x′|x′, t)p(x′, t) dx′ . (2.25)

The integral term gives the probability that the process jumps from state a x′ to the
state x in an infinitesimal interval of time; in the notation Jin(x, t), the subscript
indicates that the term relates to the influx of probability.

It is usual that the coefficients of (2.24) do not explicitly depend on time, i.e.
we have Ai(x, t) = Ai(x) for the drift, ω(x− x′|x′, t) = ω(x− x′|x′) for the burst
kernel, and λ(x, t) = λ(x) for the burst frequency. Moreover, in the next section
we consider a possibility that the jump kernel also does not explicitly depend on
outgoing state x′, in which case we have ω(x− x′|x′, t) = ω(x− x′).

In the next chapter, the formulated equation will be used in an applied problem,
in which restriction is imposed on permissible values of the vector x(t). Therefore,
let us further assume that the dynamical system (2.21) maintains non-negativity of
trajectories x(t):

∀t ≥ 0,∀x = (x1, . . . , xn) ∈ Rn
+,∀i ∈ 1, . . . n : xi = 0⇒ Ai(x, t) ≥ 0, (2.26)

where Rn
+ is the non-negative orthant of Rn. We also assume that jumps are non-

negative, i.e. ω(b|x′, t) = 0, ∀x ̸∈ Rn
+; then the influx in (2.24) becomes a definite

integral:

Jin(x, t) =

∫
R(x)

λ(x′, t)ω(x− x′|x′, t)p(x′, t) dx′ , (2.27)

where the integration domain R(x), where x = (x1, . . . , xn) is n-dimensional rect-
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angle given as Carthesian product:

R(x) =
n∏
i=1

[0, xi] ⊂ Rn.

In this situation, equation (2.24) holds for x ∈ R+
n , whereas p(x, t) = 0 for x ̸∈ R+

n .
It is sometimes useful to use the jump size b instead of outgoing state x′ = x− b

as the integration variable; performing this substitution in (2.27) gives an alternative
expression of the influx term

Jin(x, t) =

∫
R(x)

λ(x− b, t)ω(b|x− b, t)p(x− b, t) db , (2.28)

which will be made use of below.
Finally, the time dependent distribution p(x, t) converges to the stationary dis-

tribution:
p(x, t) ∼ p(x), t→∞. (2.29)

This convergence holds in general for Markov processes which have a stationary
distribution and which are irreducible (can travel between any two states) and ape-
riodic (do not exhibit deterministic oscillations); clearly, processes studied in this
thesis satisfy these conditions.

2.5 Population framework

2.5.1 Measure-valued Markov Process

In order to extend the model to the population level, we need to describe the cell
cycle mechanism of a single cell. Let tb and te denote the beginning and the end
of the cell cycle. For the original cell tb = 0; for the cells derived from the original
cell, tb is equal to the end of the cell cycle of its mother. The cell cycle’s end te is
sampled as follows: we assume that the cell has a protein-dependent propensity to
end its cell cycle, and that this propensity is equal to the dilution rate:

Prob[te ∈ (t, t+ dt)|te > t] = γ(x(t))dt+ o(dt), t > tb. (2.30)

The end of the cell cycle triggers a branching (division) event: the current process
(the mother cell) is terminated and replaced with two new processes (daughter
cells), which inherit the mother’s protein concentration, and half of the mother’s
cell volume. The daughter processes evolve henceforth independently of each other.
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The above construction leads to a sequence of Markov processes

xi(t), tib ≤ t < tie, i = 1, 2, . . . ,

where tib and tie denote the beginning and the end of the cell cycle of the ith cell,
and xi(t) gives the protein concentration at time t of the ith cell. The mother cell is
indexed by i = 1. The ordering of the rest of the sequence depends on the algorithmic
implementation of the branching model (see Appendix A) and is immaterial for the
purposes of this section.

The composition of the population at time t can be represented by the empirical
population density (or empirical measure)

m(x, t) =
∑

i:tib<t<t
i
e

δ(x− xi(t)). (2.31)

This construction places a unit mass on top of each existing cell’s concentration. The
sum is finite because the number of cells that exist at any given time is finite. The
measure m(x, t) is a random empirical measure: it is empirical because it is based
on a finite number of observations xi(t); it is random because these observations are
random. As a function of time t, m(x, t) is a measure-valued Markov process: it
is Markovian because the future dynamics of the population can be sampled given
the present state of the measure irrespective of the past. Measure-valued Markov
processes have been widely used to model the stochastic dynamics of multi-particle
systems [78], [79].

The empirical measure is not normalised. In fact,

N(t) =

∫ ∞

0

m(x, t)dx = #{i : tib < t < tie}

gives the number of cells that exist at time t.
Let us consider the expected value of the empirical population density

h(x, t) = Em(x, t), (2.32)

which we will refer to as the (average) population density.
Aforementioned can be generalised to the cell population, where each ith cell

has n independent properties, i.e., the cell is a multivariate Markov process xi(t).

2.5.2 Population balance equation

In general, population balance equation (PBE) is an equation that describes the
mean-field behaviour of a population of particles with various possible internal fea-
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tures, spatial movements, and interaction mechanics.
Each particle is defined by external coordinates of its centroid r = (r1, r2, r3)

T

with domain Ωr and internal coordinates x = (x1, . . . , xd)
T with domain Ωx, which

determines possible values of the internal characteristics of the particle.
Let m1(x, r, t) be an empirical population density, then we define the (average)

population density function:

h1(x, r, t) = Em1(x, r, t), (2.33)

which is a sufficiently smooth function to allow differentiation with respect of any
argument required number of times. Since in this work we use the population balance
equation (PBE) exclusively to model protein concentration within a cell population,
we ensure that it meets the following conditions:

• the particle states are continuous non-negative variables as in (2.26), then the
domain Ωx = R+

d ∪ {0};
• the environment does not affect the particle inner state vector x;
• particles are distributed in space uniformly and thus the (average) population

density h1(x, r, t) does not depend on external coordinates.
These requirements on a single particle (cell) behaviour are identical to ones dis-
cussed in Section 2.4. Then each cell is described by a piecewise deterministic
Markov process x(t), in which the deterministic motion is given by (2.21), random
jumps are governed by random process B(t) (2.22), and the time trajectory is (2.23).
The cell population then becomes a measure-valued Markov process (Section 2.5.1),
implying m1(x, r, t) ≡ m(x, t) and the average density becomes h1(x, r, t) ≡ h(x, t)

as per (2.31) and (2.32), respectively.
At this point, without birth and death mechanism, the time evolution of the

initial population of the size h0 is governed by population balance equation (PBE):

∂

∂t
h(x, t) +∇ ·Ah(x, t)− (Jin(x, t)− λ(x, t)h(x, t)) = 0,

which is identical to CKDE and shows that the population is conserved.
Finally, we introduce the net rate of particles generation (population growth)

G(x, t), which is combined effect of all birth-death processes. The change in number
of particles with internal coordinates in the range [x,x+dx] is given by G(x, t) dx.
Here we assume that for given internal state x the growth net rate is proportional
to number of particles in state x, i.e., G(x, t) = g(x, t)h(x, t). Then we obtain the
final form of population balance equation [80]:

∂

∂t
h(x, t) +∇ ·Ah(x, t)− (Jin(x, t)− λ(x, t)h(x, t)) = g(x, t)h(x, t). (2.34)
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In this work, the net rate function g(x, t) is a rate of a cell population proliferation,
and we consider two types of them: constant (g(x, t) ≡ const) and protein-dependent
(g(x, t) = γ(x(t)) as per (2.30)).

At the initial time t = 0, we have a single cell with non-random initial values of
internal coordinates x0 = (x0,1...x0,d)

T , the initial condition for (2.34) is

h(x, 0) = m(x, 0) =
d∏
i=1

δ(xi − x0,i).

Depending on the birth-death mechanism, there may arise boundary conditions (as
in Section 5.3) and regulatory conditions (see [81], Chapter 2.11 in [80]).

2.5.3 Large-time solution of PBE

The population growth term has important consequences. The large-time behaviour
of both equations (2.24) and (2.34) is characterised by their principal eigenvalue λ
and the associated eigenfunction p(x) and adjoint eigenfunction w(x). For the
Chapman–Kolmogorov equation, the principal eigenfunction p(x) is the stationary
distribution, the principal eigenvalue is λ = 0, and the adjoint eigenfunction is triv-
ially w(x) ≡ 1. For the population balance equation, these characteristics can be
found using he application of spectral decomposition:

h(x, t) ∼ w(x0)e
λtp(x), t→∞. (2.35)

The adjoint eigenfunction is thereby chosen so as to satisfy the biorthogonality
condition

∫∞
0
w(x)p(x)dx = 1. The adjoint eigenfunction determines the dependence

of the large time behaviour on the initial condition. This is not too important for
us and we will not calculate the adjoint eigenfunction (or at least not yet).

We are interested in the actual size and composition of the population rather
than its expectation. A classical result for supercritical (i.e. with λ > 0) branching
processes comes to the rescue, which says that the expectation can be removed from
the left hand side of (2.35), with the caveat that w(x0) be replaced by a random
variable [82], [83]. The empirical population density thus satisfies

m(x, t) ∼ W (x0)e
λtp(x), t→∞, (2.36)

where W (x0) > 0 is a random variable such that EW (x0) = w(x0). Equation (2.36)
has been rigorously proven for multitype branching processes with finite number
of types [82], [83]. Eigenfunctions are then simple eigenvectors. Here, instead of
finite number of types, we have a continuum of possible concentration levels, hence
eigenfunctions.
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Equation (2.36) is equivalent to

n(t) ∼ W (x0)e
λt,

m(x, t)

N(t)
∼ p(x), t→∞. (2.37)

The total population increases exponentially. The influence of the initial con-
dition and the initial low population noise is encompassed in the random pre-
exponential factor W (x0). The normalised empirical population density converges
to the principal eigenfunction of the population balance equation.

2.6 Basic model of unregulated gene expression

In the absence of feedback, production events (or bursts) occur randomly in time
with constant stochastic rate (or frequency) α per unit time. This means that inter-
arrival times of synthesis events are i.i.d. exponentially distributed random variables
with mean 1/α. Whenever a burst occurs, the protein concentration is discontin-
uously increased by the burst size, which is randomly drawn from the exponential
distribution with mean β. Between bursts protein degrades deterministically, i.e,
in this one dimensional model the dynamical system (2.21) is a simple ordinary
differential equation (ODE):

ẋ = −x.

Note that the degradation rate is equal to one, implying that time is measured in
units of protein lifetime. Thus the parameter α assumes the meaning of normalized
burst frequency, and gives the expected number of bursts occurring per typical
protein lifetime.

Finally, for the unregulated gene expression with an arbitrary burst kernel w the
Chapman-Kolmogorov equation (2.24) becomes:

∂p(x, t)

∂t
=

∂

∂x
(xp(x, t))− α

(
p(x, t)−

∫ x

0

b(x− y)p(y, t) dy
)
,

where last two terms can be represented as following derivative using Leibnitz inte-
gral rule:

−
∫ x

0

b(x− y)p(y, t) dy + p(x, t) =
d

dx

∫ x

0

B̄(x− y)p(y, t) dy . (2.38)

Typically, it is assumed that the burst size has an exponential distribution with
mean β, then the burst kernel is given by:

ω(x− y|y) = 1

β
e−(x−y)/β.
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Afterwards, we substitute ω(·), integrate the equation with respect to x, and set
∂p
∂t

= 0. Since the process is aperiodic and irreducible, we use (2.29) and obtain the
equation of stationary probability density function:

xp(x) = α

∫ x

0

e−
x−y
β p(y) dy , (2.39)

which is the Volterra integral equation with a difference kernel, for which one can
obtain p(x) using Laplace transform approach [84]. First, we define the Laplace
image P (s) of pdf p(x), i.e., P (s) = L{p(x)}(s). Next, we transform the integral
equation into a differential equation:

−dP (s)

ds
= αP (s)

1

s+ 1/β
,

solution of which is P (s) = (bs+1)−a. The original function of this P (s) is the PDF
of gamma distribution (Property 2.4):

p(x) =
1

βαΓ(α)
xα−1e−x/β. (2.40)

It means that in the unregulated gene expression the protein concentration x ∼ Γ(α, β),
i.e. it is gamma-distributed with shape α and scale β [18]. From this follow, in par-
ticular, steady state mean and variance of the protein concentration:

E(x) = αβ, Var(x) = αβ2. (2.41)
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Chapter 3

Feedback on transcriptional

frequency

In this chapter, we explore gene expression within the context of a feedback on
a transcriptional rate. We consider a Hill-type negative autoregulation, implying
that the rate of transcription for the protein of interest is inversely dependent on
its current concentration. This concept is implemented into the basic model of
unregulated gene expression in a single cell (see Section 2.6).

Next, we consider an autoregulatory function and extended study to a model of
a cell population (see Section 2.5). Although the autoregulatory loop modifies the
protein distribution relative to scenarios of unregulated expression, we demonstrate
that the protein distributions within a single cell and across a population are, in
fact, identical.

This chapter is partially based on the article previously published in European
Control Conference [85], the content of which was expanded by Section 3.2.

3.1 Single cell model

In this section we consider a model with negative autoregulation, which includes only
the protein X itself. This nodel is an extension of the fundamental model, given in
Section 2.6. The gene expression is studied in terms of a piecewise-deterministic
Markov process [18] in a continuous time and state space, in which the protein X
decays deterministically but is produced stochastically in bursts. Continuous space
state is achieved by studying protein concentration – number of protein molecules
per unit of volume – as opposed to the number of protein molecules [86]. The process
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can be expressed as a sequence of chemical reactions:

R1 : ∅ Λ(x)−−→ B×X

R2 : X
1−−→ ∅

where X is produced in random bursts with frequency governed by response func-
tion Λ(x) in the reaction R1 and naturally degrades in R2. We suppose that the
burst size is drawn from exponential distribution with mean β. The value one of
the degradation rate constant corresponds to measuring time in units of the protein
lifetime, which can be done without any loss of generality. The empty set symbol
on the left-hand side of R1 indicates that X is created from an inexhaustible source
of molecules; the stoichiometric coefficient B on the right-hand side gives the burst
size. The empty set on the right-hand side represents a sink of degraded molecules,
so that a product of decomposition is out of our interest.

According to the reaction channel R2, the dynamical system (2.21) is given by

ẋ = A(x) = −x,

i.e. the protein concentration trajectory x(t) is proportional to e−t inside any time
interval which does not contain a burst event. The value one of the degradation rate
constant corresponds to measuring time in units of the protein lifetime, which can
be done without any loss of generality.

The (stationary) distribution of protein concentration is obtained as a steady-
state solution of the Chapman-Kolmogorov equation (2.24) associated to the process
described above. The master equation here

∂p(x, t)

∂t
=

∂

∂x
(xp(x, t))− Λ(x)p(x, t) + Jin(x, t), (3.1)

where as Jin we denoted the probability influx according to (2.27), which is here
given by

Jin(x, t) =

∫ x

0

ω(x− y|y) Λ(y)p(y, t) dy .

In the probability flux Jin(x, t), describing an instant growth of the protein level in
bursts, ω(x− y|y) is a jump kernel (2.22), which defines the conditional probability
that concentration will jump from a given protein level y to x in infinitesimal period
of time, and Λ(x) is the function of the jump rate. Equation (3.1) is understood to
hold for non-negative concentrations of (x ≥ 0), whereas p(x, t) = 0 for any x < 0.

Let us introduce an equivalent kernel, which we will refer to as a jump ker-
nel given by the product of the burst rate and a survival function correspond-
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ing to ω(x− y|y)

B(x|y) = Λ(y)

∫ ∞

x

ω(z − y|y) dz , (3.2)

which expresses the probability of burst size is larger than the difference x− y at
frequency Λ(x). For the jump kernel the following equalities are true:

B(x|x) = Λ(x)Pr{B(t) > 0} = Λ(x), (3.3)
∂

∂x
B(x|y) = −Λ(y)ω(x− y|y), (3.4)

which allow us to use the Leibniz integral rule and collapse the last two terms in (3.1)
into a derivative of an integral with a variable bound, i.e

∂

∂x

(∫ x

0

B(x|y)p(y, t) dy
)

= Λ(x)p(x, t)−
∫ x

0

Λ(y)ω(x− y|y)p(y, t) dy . (3.5)

Equation (3.1) takes the form of a probability conservation law [87]

∂p(x, t)

∂t
+
∂J(x, t)

∂x
= 0,

in which the probability flux is now given by [88]

J(x, t) = −xp(x, t) +
∫ x

0

B(x|y)p(y, t) dy .

Like previous studies (e.g. [18], [88]), we focus on the steady-state behavior of the
model: we set ∂p(x, t)/∂t = 0, from which it follows that the probability flux J(x, t)
must be constant with respect to x; and since we do not admit a nonzero flux of
probability mass from infinity, this constant has to be equal to zero. Thus, we obtain
a Volterra integral equation of the second kind [84] with respect to p(x, t) = p(x):

xp(x) =

∫ x

0

B(x|y)p(y) dy . (3.6)

Next, we implementing negative feedback, meaning that we consider a non-
increasing family of functions Λ(x). Specifically, we declare Λ(x) as the Hill func-
tion [89]

ΛH(x) =
α

1 + (x/K)H
, (3.7)

where α, H, and K are parameters explained below. The Hill function has been
widely used in literature and justified in terms of cooperative binding of a protein
molecule to its gene’s promoter. The parameter α here takes the role of maximal
burst frequency, which is achieved in the absence of the self-repressing protein. The
parameter K gives the concentration required to reach half the maximum burst
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Figure 3.1: Examples of Hill functions (3.7) with different choices of Hill coef-
ficients H. As H increases to infinity, the function develops at x = K a jump
discontinuity (marked with blue arrows). The other parameters of (3.7) are set
to α and K = 1.

frequency; it corresponds to the dissociation constant of the protein–promoter bind-
ing [90]. Interestingly, by taking K to infinity one recovers the unregulated model
as introduced earlier in this section. The parameter H, which is referred to as the
Hill coefficient, indicates how steeply feedback reacts to changes in protein concen-
tration (as shown in Figure 3.1), and directly corresponds to the cooperativity in
the underlying promoter–protein interaction.

We focus specifically on very large binding cooperativities; taking the Hill coef-
ficient to infinity, we find that (cf. Fig. 3.1)

Λ∞(x) = lim
H→∞

ΛH(x) =


α, x < K,

α
2
, x = K,

0, x > K,

(3.8)

which we hereafter refer to as bang–bang feedback. In case of bang–bang type
feedback, the protein exponentially degrades, and bursts cannot occur, as long as
the concentration level is higher than K; once x falls beneath K, bursts occur with
a constant frequency α.

The negative regulation kernel is given by the Λ(y) and the probability of a
burst exceeding the size of x− y, i.e.

B(x|y) = Λ(y)B̄(x− y), (3.9)

where B̄(x−y) is a complementary cumulative distribution function (CCDF) of the
exponential distribution, i.e., B̄(x − y) = e−

x−y
β . Note that while this kernel is no

longer a difference kernel, it is still a product kernel, and, as such, the associate
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integral equation

xp(x) =

∫ x

0

Λ(y)e−
x−y
β p(y) dy

admits an explicit solution [32]. In order to find it, we pull out from under the
integral sign the exponential function e−x/β, then differentiate the equation with
respect to x and apply the Leibnitz integral rule; this yields an ODE

(ex/βxp(x))′ = Λ(x)ex/βp(x),

the general solution of which is

p(x) = Cx−1e−x/β exp

(∫
Λ(x)

x
dx

)
, (3.10)

in which C is an integration constant. The primitive function in the argument of
the exponential can easily be solved for the piecewise constant Λ(x) in case of of
the bang–bang regulation (3.8). Since the bang–bang response function features a
discontinuity at x = K, the primitive function in the exponential, as well as the
PDF p(x) itself, are nonsmooth at x = K; to the left and to the right of the point
of smoothlessness the density is given by separate expressions

p(x) =

{
CK−αe−x/βxα−1, x < K,

Ce−x/βx−1, x ≥ K.
(3.11)

The condition that the distribution density must be normalised to one fixes the value
of the normalisation constant to

C =

(
γ(α,K/β)

(K/β)α
+ E1(K/β)

)−1

, (3.12)

where γ(·, ·) is the lower incomplete gamma function and E1(·) is the exponential
integral defined on the complex plane [65]. Integrating the density multiplied by the
factor x, we obtain

E(x) =
αβγ(α,K/β)

γ(α,K/β) + (K/β)αE1(K/β)
(3.13)

for the expected value of protein concentration at steady state. Considering a lim-
iting case with the infinitely high frequency, the mean protein concentration is

E(x) = βe−K/βE−1
1 (K/β). (3.14)
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3.2 Population model

In this section, we explore the difference between the single cell and population
model. Here the protein concentration in a single cell has similar dynamics as one
in the previous section: protein produced instantly in random bursts; the burst size
is drawn from the exponential distribution with mean β. Between the bursts the
protein degrades with constant rate γ. Bursts occur randomly, but now we consider
a general form of protein-dependent stochastic rate Λ(x).

We extend model to describe a cell population: each cell evolves independently
and follows the same dynamics as in single cell model. During cell division, a mother
cell splits into two identical daughter cells and dies; each daughter cell inherits half
of the mother’s volume and protein content. Immediately after division, the protein
levels in the daughter cells are identical to the mother’s, ensuring uniformity in
protein concentration in descendants. For the biologically correct model (finite non-
zero mean cell volume), the division event is considered to be the Poisson process
with rate γ.

Then the time-evolution of the protein concentration pdf p(x, t) is governed by
the Chapman-Kolmogorov equation:

∂p(x, t)

∂t
=

∂

∂x
(γxp(x, t)) +

∫ x

0

b(x− y)Λ(y)p(y) dx− Λ(x)p(x), (3.15)

where b(x) = e−x/β/β is probability density function of the exponential distribution.
In order to find the stationary distribution, we write it as a probability conservation
equation. It is done by gathering the last two terms of (3.15) as per Leibniz integral
rule (3.5).

Finally, the steady state of the system implies that distribution does not change
over time, i.e., ∂p(x, t)/∂t = 0. We obtain:

d

dx
(γxp(x)) =

d

dx

(
B̄ ∗ p̃

)
(x), (3.16)

where an auxiliary function p̃(y) = Λ(y)p(y) is used for convenient representation
of the convolution; B̄ = e−x/β is denoted CCDF of the exponential distribution.

We proceed with the model of the population, where the lifecycle of each cell is
identical to one described at the beginning of the chapter. Its composition is given
by the function h(x, t) – the average number of cells with given concentration x

at the time t (see Section 2.5). The time evolution of h(x, t) is described by the
population balance equation (2.34):

∂h(x, t)

∂t
=

∂

∂x
(γxh(x, t)) + γh(x, t)− ∂

∂x

(∫ x

0

B̄(x− y)Λ(y)p(y) dy
)
. (3.17)
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where the net rate function g(x, t) ≡ γ and then the population growth term γh(x, t).
By substitution, we can prove that the solutions of PBE (3.17) satisfy:

h(x, t) = p(x)eγt,

where p(x) is the solution of the master equation (3.15).
From which it follows, in particular, that

h(x, t) ∼ p(x)eγt, t→∞,

where p(x) solves the stationary problem (3.17). This leads to the conclusion that
the stationary distributions of the protein concentration p(x) in both frame- works
are identical.

35





Chapter 4

Feed forward model

In this chapter we present a comprehensive model for understanding the interactions
in a feed forward loop (FFL). It controls the species of interest (stable mRNA
molecules) via co-produced auxilliary species (unstable miRNA molecules), which
are able to deactivate or degrade mRNA molecules. We show that in a low noise
regime (small and frequent production bursts) it is perfectly adaptating, i.e., it
perfectly counterbalances changes in a production frequency and keeps the mean
mRNA concentration at the constant level. Next we investigate how the inclusion
of a moderate noise affects this perfect adaptation property. We derive the stationary
moments of mRNA and show that FFL is less volatile then the negative feedback
loop. Finally, we extend our research to the case of an unstable mRNA and derive
the stationary moments.

This chapter includes material based on an article "Maintenance of steady state
mRNA levels by a microRNA-based feed forward loop in the presence of stochastic
gene expression noise" that has been accepted for publication in European Journal
of Applied Mathematics.

4.1 Model statement

We study with a chemical system with two species X and Y (mRNA and miRNA),
the detailed biological explanation of which is provided in Chapter 1. We formalise
it as a set of chemical reactions given in Figure 4.1a. The bursty production of both
species in R1 is modeled by stochastic jumps, and since they share the same gene,
they are synthesized in equally sized bursts. Inhibition and degradation reactions
R2 and R3 are modeled deterministically. We assume that X has a relatively long
lifetime, so we neglect its spontaneous degradation. Therefore, a molecule of X can
be eliminated only via the interaction R2. While a molecule of Y survives in R2,
it degrades independently due to natural decay via the reaction channel R3. As
it follows from R3, all reactions rates are normalised to the lifetime of Y; also the
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R1 : ∅ α−−→ B× (X + Y)

R2 : X + Y
δ−−→ Y

R3 : Y
1−−→ ∅

(a) (b)

Figure 4.1: (a) the studied model in terms of chemical kinetics; the empty
set symbol indicates that either reactants, or product of reaction are out of our
interest. (b): Sample trajectories of X and Y concentrations. Between stochastic
bursts, X and Y decay deterministically as per (4.1). Despite the fact that X
degrades faster than Y, once level of Y is close to zero, X also stops decreasing;
this indicates that the only way for X to degrade is interaction with Y. In the
simulation, parameters are following: α = 0.25, δ = 1, β = 1.

hazard rate of the interaction between X and Y is constant and equal to δ. The
model, in which mRNA is unstable and degrades at a constant rate γ, is further
studied in the end of the section.

Since two species X and Y are involved, a state of their concentrations is given by
a two-dimensional vector x = (x, y). The deterministic motion x(t) (2.21) is given
by the mass-action kinetics of reactions R2 and R3, the decay of concentrations
between bursts is described by the following ODEs:

ẋ = −δxy, ẏ = −y. (4.1)

The evolution of the probability density function (pdf) p(x, y, t) is given by the
equation:

∂p(x, y, t)

∂t
=

∂

∂x
(δxyp(x, y, t)) +

∂

∂y
(yp(x, y, t))

+ Jin(x, y, t)− Λ(x, y, t)p(x, y, t),

(4.2)

where

Jin(x, y, t) = Λ(x, y, t)

∫ x

0

∫ y

0

ω(bx, by)p(x− bx, y − by, t) dbx dby ,

gives the probability influx, Λ(x, y, t) is the burst rate and ω(bx, by) is the bivari-
ate burst jump kernel, which will be made explicit below. Note that we do not
incorporate feedback in our model; the regulation is only of feed forward type. The
integro-differential equation (4.2) can be treated as a special two-dimensional case
of the Chapman-Kolmogorov equation, which is reviewed in Section 2.4.

According to the model requirements, bursts satisfy the following:
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• the burst rate is time-homogeneous and does not depend on the either state
variable: Λ(x, y, t) ≡ α;

• the burst size bz = z − z′ is also independent of the time; it is drawn from
any distribution, the probability density function f(bz) of which has the non-
negative support.

• both species are increased simultaneously and by the same amount, so that
the jump kernel takes the form:

ω(bx, by) = f(bx)f(by)δ(F (bx)− F (by)),

where F (bz) is the cumulative distribution function corresponding to f(bz)

and δ(·) is the Dirac delta function. Furthermore, a property of Dirac delta
function, having an argument that is a differentiable function [91]:

δ(g(x)) =
∑
i

δ(x− xi)
|g′(xi)|

, xi ∈ {x|g(x) = 0}, ∀x : g′(x) ̸= 0,

allows us simplify δ(F (bx)− F (by)):

ω(bx, by) = f(bx)δ(bx − by).

In our problem bz is drawn from exponential distribution with mean β, which
leads to f(bz) = e−bz/β/β.

Application of the conditions above to (4.2) leads to the influx of the form:

Jin(x, y, t) =
α

β

∫ x

0

∫ y

0

e−by/βp(x− bx, y − by, t)δ(bx − by) dby dbx. (4.3)

We proceed with simplification of the influx and use a property of the delta function:
an integral

∫
A
f(x)δ(x− x0)dx = f(x0), only if x0 ∈ A; in the inner integral of (4.3)

with respect to by, we set the root of delta function x0 = bx and obtain:

Jin(x, y, t) =
α

β

∫ x

0

θ(y − bx)e−bx/βp(x− bx, y − bx, t) dbx. (4.4)

The appearance of the Heaviside step function θ(·) can be explained as follows: if
a burst size of one RNA is greater than the final value of another one, then the
condition of equally sized bursts cannot be satisfied. Thereby permissible values of
bx are in the interval (0, y] and, at the same time, the integration interval is (0, x].
After we eliminate θ(·), the upper limit becomes minimum of x and y.

Combining production jumps with decay drift, we obtain the dynamics of Marko-
vian drift-jump process (its sample paths are shown in Fig. 4.1b); an integro-
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differential equation for p(x, y, t) is following:

∂

∂t
p(x, y, t) =

∂

∂x
(δxy p(x, y, t)) +

∂

∂y
(yp(x, y, t))− αp(x, y, t)

+
α

β

∫ M

0

e−bx/βp(x− bx, y − bx, t) dbx.
(4.5)

where M = min{x, y} gives the upper bound. Note that the equation will remain
the same, if we change the order of integration in (4.3) and then let the root of
the delta function x0 be equal to bx. This is due to the evenness of the Dirac delta
function and the above-mentioned relation between θ(·) and the integration limit M .

Proceeding to solve (4.5): we apply a double Laplace transform to p(x, y, t) with
respect to variables x and y, and obtain its image as a function of Laplace variables
ϕ and ψ (definition and required properties of the double Laplace transform are
provided in Section 2.2.2):

P (ϕ, ψ, t) =

∫ ∞

0

∫ ∞

0

e−ϕx−ψyp(x, y, t) dxdy. (4.6)

Note that the integral term in (4.5) is a convolution about an axis by Definition 2.4:

f ∗
a b
g =

∫ M

0

f(x− aν, y − bν)g(ν) dν, where M = min
{x
a
,
y

b

}
,

where parameters a and b are equal to β, f(·) is joint pdf p(·), and g(·) is an
exponential function. Hence, its Laplace transform is:

L
[
p ∗
β β

e−ν/β
]
(ϕ, ψ) = L[p](ϕ, ψ)L[e−ν/β](βϕ+ βψ).

This allows us to apply a double Laplace transform to (4.5), which results in a PDE:

∂P

∂t
= δϕ

∂2P

∂ϕ∂ψ
− ψ∂P

∂ψ
− P αβ(ϕ+ ψ)

β(ϕ+ ψ) + 1
, (4.7)

which is, in comparison with (4.5), more suitable for further analysis.

4.2 Mean-field model

4.2.1 Steady-state concentrations

From definition (4.6) it follows that we can derive the mixed moments of random
processes X = X(t) and Y = Y (t) using the image of p(x, y, t). It is done by differ-
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entiating (4.6) and setting (ϕ, ψ) = (0, 0):

E(XkY m) = (−1)k+m ∂k+mP

∂ϕk∂ψm
(0, 0). (4.8)

In particular, applying this to (4.7), we obtain the system of moment equations:

Ė(X) = αβ − δ E(XY )

Ė(Y ) = αβ − E(Y ).
(4.9)

As is typical for kinetics systems with bi-molecular reactions, the moment equations
are not closed [16], i.e. higher-order moments appear in the equations for the means.
This difficulty can be eliminated provided that the noise in the concentrations of x
and y is low; then we can remove the expectation operators from (4.9), obtaining
the mean-field model:

ẋ = αβ − δxy

ẏ = αβ − y.
(4.10)

We take a look at steady state mean concentrations of x and y; this leads us to the
solutions:

x =
1

δ
, y = αβ. (4.11)

Interpreting transcription as input, which is characterized by production rate αβ,
and the concentration X as the ultimate output of the system, the first equality
in (4.11) indicates that the model is perfectly adaptating: the steady state of X
does not depend on the rate of transcription. Thus, the model in the small noise
regime successfully balances out any disturbance of the input. This statement is
reinforced by deriving time-dependent solution in the next section, which is drawn
as a red curve on Figure 4.2.

4.2.2 Time-dependent solutions

Let us solve the system (4.10), provided that the initial conditions are given by:

x(0) = x0, y(0) = y0,

where x0 and y0 are positive constants. The solution for y(t) is derived directly from
the second equation in (4.10) and the initial condition above:

y(t) = αβ

((
y0
αβ
− 1

)
e−t + 1

)
.
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We substitute it into the first equation in (4.10) and obtain a following ODE with
respect to x(t):

ẋ+ ρx(Ke−t + 1) =
ρ

δ
, (4.12)

where new constants are K = y0
αβ
− 1 and ρ = αβδ (the effective production rate).

Now we can find an integration factor µ(t); in this equation, it is given by:

µ(t) = e
∫
ρ(Ke−t+1)dt = eρt−ρKe

−t

.

After multiplication of equation (4.12) by µ(t) and collapsing the left-hand side by
the product rule, we find

(xµ)′ =
ρ

δ
µ,

i.e.

x(t) =
ρ

δ

1

µ(t)

(∫ t

0

µ(τ) dτ + C

)
, (4.13)

where C is an arbitrary constant. Proceeding with the integral term in (4.13), we
integrate it by parts and preform a substitution u(τ) = ρKe−τ , obtaining:∫ t

0

µ(τ) dτ =
1

ρ

(
eρ(t−Ke

−t) − e−ρK
)
+

(ρK)ρ

ρ

∫ u(t)

u(0)

u−ρe−u du .

In case that K > 0 (i.e. the initial level of Y is greater then the production rate
αβ), the concentration of X evolves in time as follows:

x(t) =
1

δ

(
1 + (δx0 − 1)e−ρ(t+K−Ke−t)

)
+

(ρK)ρ

δ

γ(1− ρ, ρKe−t)− γ(1− ρ, ρK)

eρ(t−Ke−t)
.

(4.14)

By γ(·, ·) is denoted the incomplete gamma function (details on this special function
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are provided in Section 2.1.1). The solution (4.14) is valid for ρ ∈ (0, 1) due to
the requirement for positivity of the parameter s. However, by performing ⌈ρ⌉
times integration by parts in (4.13) and subsequent following the approach above,
the solution x(t) can be expressed in terms of the special functions for any ρ ∈
(k, k + 1], k ∈ N.

In case that K < 0, we preform integration by a substitution u(τ) = −ρKe−τ ,
and the solution is

x(t) =
1

δ
(1 + (δx0 − 1)e−ρ(t+K−Ke−t))− (−ρK)ρ

δeρ(t−Ke−t)

∫ u(t)

u(0)

u−ρe−u du , (4.15)

where the arbitrary constant remains the same. Both of the solutions above have
the same form at K = 0:

x(t) =
1

δ
(1− e−ρt) + x0e

−ρt,

which can be also seen directly from (4.12).

4.3 Stationary moments

The smallness of noise is guaranteed only in the asymptotic regime of small but fre-
quent bursts, i.e. provided that β → 0, α→∞, while assuming that the production
rate αβ = O(1). However, these assumptions are restrictive and we are inter-
ested in general large-time behavior of p(x, y, t). After the steady state is reached,
∂
∂t
p(x, y, t) = 0; the probability density function p(x, y) as well as its image P (ϕ, ψ)

do not depend on time:

δϕ
∂2P

∂ϕ∂ψ
− ψ∂P

∂ψ
− P αβ(ϕ+ ψ)

β(ϕ+ ψ) + 1
= 0. (4.16)

Notice that according to (4.6), the image P (ϕ, ψ) at ϕ = 0 is equal to the single
Laplace transform of the marginal distribution of the species Y, which is pY (y) =∫∞
0
p(x, y) dx. From this follows that we can derive pY (y) directly by equating ϕ = 0

in (4.16). The solution of derived equation provides an image of pY (y):

P (0, ψ) = (βψ + 1)−α. (4.17)

The obtained function is the Laplace image of the probability density function of
unregulated gene expression [85]. This is not surprising since within our model the
synthesis of Y is not affected by any regulatory mechanisms.

Adhering to this logic, the marginal distribution ofX can in principle be obtained
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from P (ϕ, 0), yet it does not seem possible to obtain an analytical solution as setting
ψ = 0 in (4.16) does not yield a closed equation. Nevertheless, it is possible to derive
explicit expressions for E(X), cf. (4.8), as well as higher-order moments of X:

E(Xk) = (−1)k ∂
kP

∂ϕk
(0, 0). (4.18)

Let us start with differentiation of (4.16) with respect to ϕ, then equating ϕ to zero:

(δ − ψ) ∂
∂ψ

(∂P
∂ϕ

(0, ψ)
)
− αβψ

βψ + 1

∂P

∂ϕ
(0, ψ)− αβ

(βψ + 1)2
P (0, ψ) = 0. (4.19)

We define the function f(ψ) = ∂ϕP (0, ψ), its expanded form is following:

f(ψ) = −
∫ ∞

0

∫ ∞

0

xp(x, y)e−ψy dy dx . (4.20)

Afterwards, using substitution (4.20) and replacement (4.17) for P (0, ψ), we reduce
the initial PDE (4.19) to the following ODE:

(δ − ψ)f ′(ψ)− f(ψ) αβψ

βψ + 1
− αβ

(βψ + 1)α+2
= 0, (4.21)

the general solution of which is:

f(ψ) = C(βψ + 1)−q(δ − ψ)−δβq − βψ + αβδ + 1

δ(δβ(α + 1) + 1)

1

(βψ + 1)α+1
, (4.22)

where q = α
1+βδ

.
However, we do not have initial conditions for equation (4.21) to determine the

integration constant C. Instead, we can see from definition (4.20) the solution
f(ψ) as ψ = 0 is the negative value of the first moment of X, i.e. f(0) = −E(X);
therefore, there are indirect conditions on (4.22) due to the studied model. First,
concentration of the protein must be non-negative value; next, the model is placed
in a cell, whose capacity is bounded, so E(X) must be a finite value. Using the limit
comparison theorem for improper integrals [92], the formulated restrictions can also
be applied to the solution (4.22):

−∞ < f(ψ) ≤ 0. (4.23)

Any nonzero C leads to a singularity at a point ψ = δ and a contradiction with
conditions (4.23); then the only satisfying value is C = 0, and the solution of (4.21) is

f(ψ) = − βψ + αβδ + 1

δ(δβ(α + 1) + 1)

1

(βψ + 1)α+1
. (4.24)
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Figure 4.3: (Left) Sample trajectories of the mRNA concentrations given
that initial conditions are drawn from the uniform distribution on the interval
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As was mentioned before, the definition of f(ψ) makes it possible to use the Laplace
image property (4.18) to obtain the steady-state mean value of X by setting ψ = 0

in (4.24); this yields

E(X) =
1

δ
− β

δβ(α + 1) + 1
, (4.25)

a graph of which is shown in Fig. 4.4 (left panel). Clearly, in a high frequency
mode, the mean value in steady-state only depends on the hazard rate of interaction
between the species:

lim
α→∞

E(X) =
1

δ
, (4.26)

which is consistent with the mean-field result (4.11).
Let us take the second derivative of (4.16) as ϕ = 0 and repeat the same approach.

The the second moment of x is

E(X2) =
(ξ − δβ)2

δ2ξ(ξ + δβ)
+

2β(ξ − δβ)
δ(α + 2)(2ξ − 1)(ξ + δβ)

+
αβ

δ(α + 2)
, where ξ = βδ(α + 1) + 1.

(4.27)

Although we do not provide a definite proof, we expect that an explicit formula can
be derived for any k-th moment.

The verification of the obtained results (4.25) and (4.27) was performed using a
stochastic simulation approach. We constructed an algorithm, in which burst events
are simulated using the inversion sampling method and between two consecutive
bursts, the trajectories of species X and Y are determined by the solutions of (4.1).
Let us denote the generated trajectory of X on a time interval [0, T ] as the function
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xT (t). By the mean value theorem for integrals we calculate the i-th sample moment
Mi(X) as follows:

Mi(X) =
1

T

∫ T

0

xiT (t) dt . (4.28)

The simulations show that the first moment M1(X) (sample mean) and the second
moment M2(X) consistently converge to the obtained values of E(X) and E(X2)

(Fig. 4.3, right panel). Deviation of the computational results are due to the in-
fluence of the initial conditions, thus it is crucial that the simulation duration is
sufficiently long and the process is stabilized (Fig. 4.3, left panel). Further details
concerning simulations of a piecewise continuous trajectory x(t) and the computa-
tions of Mi(X) are discussed in Appendix A1.

4.4 Imperfect adaptation

In this chapter sections, we constructed a stochastic model of gene expression that
implements the feedforward loop motif. This allowed us to obtain analytical values
of mean concentration in steady-state. According to the obtained results, the IFFL
exhibits a nearly perfect adaptation in the low noise regime, i.e if the mean burst
size β is relatively small. This version of feedforward loop is well suited to support
homeostasis in cell processes. Nevertheless, it is not obvious how robust it is in
presence of high noise.

One way to evaluate is by comparison with another control mechanism. In
Section 3, we have studied gene expression, where the production of gene product X
is regulated by applying NFB loop to its transcriptional frequency. Derived steady-
state distribution also allowed us to obtain an explicit formula for the steady-state
mean concentration of X (3.11).

Despite the different mechanics of regulation and parameter sets, comparing
equations (3.14) and (4.26) allows us to match both models in a high-frequency
mode, then we set

δ = β−1eK/βE1(−K/β)

to ensure that both IFFL and NFB approach the same value (Fig 4.4, right panel).
As also shown in the right panel of Fig. 4.4, in the presence of high noise the

feedforward loop becomes insensitive to changes in production rate much earlier,
than the negative feedback. Although the system’s parameters have greater impact
as the mean burst size grows, the FFL still provides a non-zero concentration even for
vanishingly small burst frequencies, unlike the NFB. This can be explained by noting
that the main source of decreasing mRNA concentration X in FFL is miRNA Y
(which is unstable), but not natural degradation.
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Based on these observations, we can conclude that if fine tuning of factors is
possible in a system, FFL provides a much narrower interval of possible steady-state
concentrations; it can be an efficient way of maintaining homeostasic expression of
a gene.

4.5 Model expanded to the natural degradation of

mRNA

Our main goal was to study the minimal model with isolated incoherent feed forward
loop (IFFL), which allows us to obtain results in the interpretable parameter space.
Thus, we assumed that mRNA is stable and thus does not degrade. In this section,
we study a more general case, where mRNA is unstable and its degradation cannot
be neglected.

The reaction set corresponding to the new model (compared to the one in
Fig. 4.1a):

R1 : ∅ α−−→ B× (X + Y), R3 : Y
1−−→ ∅,

R2 : X + Y
δ−−→ Y, R4 : X

γ−−→ ∅.

has additional reaction channel R4, which captures mRNA degradation at a constant
rate γ. R4 will change only the deterministic dynamics of mRNA level and will not
affect miRNA:

ẋ = −δxy − γx, ẏ = −y,
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where γ is the natural degradation rate of mRNA. The sample trajectories of this
model compared to one with γ = 0 are shown in Fig. 4.5 (left panel).

The evolution of the probability density function p(x, y, t) is given by the follow-
ing equation:

∂p(x, y, t)

∂t
=

∂

∂x
((δxy + γx)p(x, y, t)) +

∂

∂y
(yp(x, y, t))

− α(x, y, t)p(x, y, t) + Jin(x, y, t), (4.29)

where Jin is identical to (4.4), since stochastic dynamics are not influenced by the
γ. The subsequent approach remains the same to one in Section 4.3. It allows us to
convert (4.29) into ODE with respect to the function f(ψ) (defined in (4.20)) with
the property f(0) = −E(X):

(ψ − δ)f ′(ψ) + f(ψ)
(αβ + γβ)ψ + γ

βψ + 1
= − αβ

(βψ + 1)α+2
= 0. (4.30)

Since for any non-homogeneous linear ODE

f ′(ψ) + f(ψ)f0(ψ) = g(ψ)

a general solution is given by

f(ψ) = e−F (ψ)

(∫ ψ

0

eF (x)g(x) dx+ C

)
, F (ψ) =

∫
f0(ψ) dψ , (4.31)

we obtain the homogeneous solution of (4.30), which has a similar form as one
in (4.22):

fH(ψ) = C (βψ + 1)−q (ψ − δ)−γ−δβq .

The significant difference appears in the particular solution fp(ψ), which is given by
the integral:

fp(ψ) = (βψ + 1)−P−α−2(ψ − δ)−Q−1

∫ ψ

0

(βx+ 1)P (x− δ)Q dx

= (βψ + 1)−P−α−2(ψ − δ)−Q−1I(ψ),

where P = − αβδ
δβ+1
− 2 and Q = αβδ

δβ+1
+ γ − 1.

The hypergeometric function 2F1 has the suitable representation as an integral
with variable upper bound (See Section 2.1.3). We use substitution y = x − δ to
bring the integral I(ψ) to the required form (2.19). It leads to a = −P , b = Q+ 1,
and (κu + 1) = βψ+1

δβ+1
, which satisfy conditions in (2.19). Then we evaluate the
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Figure 4.5: (Left) Sample trajectories of naturally degrading mRNA as γ =
δ/2 (violet line) compared to the stable mRNA as γ = 0 (red line); miRNA
concentration is not affected by and its dynamics remains the same (blue line).
(Right) Violet line is (4.32), red dashed line correspond to (4.25). Green dots
are values obtained by simulation, which is constructed and tuned according to
Appendix A. Parameters are following: δ = 0.4, α = 0.1, β = 0.5.

integral:

I(ψ) = (1 + δβ)P
(ψ − δ)Q+1

Q+ 1
2F1

(
−P,Q+ 1, Q+ 2;

β(δ − ψ)
δβ + 1

)
+ C1,

where appearance of a constant C1 is caused by the substitution y = x − δ, which
changed the interval of integration to (−δ, ψ − δ). Then I(ψ) was split into two
integrals with middle boundary equal to zero: the first one was rewritten as the
hypergeometric function as per (2.19); the second one is independent of ψ and
denoted by C1, afterwards C1 is absorbed by the arbitrary constant C in (4.31). We
obtain:

fp(ψ) =−
αβ(βψ + 1)−(α+1)

γ + βδ(α + γ)

(
βψ + 1

δβ + 1

)ξ+1

× 2F1

(
ξ + γ, ξ + 2, ξ + γ + 1;

β(δ − ψ)
βδ + 1

)
, ξ =

αβδ

1 + βδ
.

After using an argument transformation from Property 2.2(b), the particular solu-
tion takes form:

fp(ψ) = −
αβ(βψ + 1)−(α+1)

γ + βδ(α + γ)
2F1

(
1, γ − 1, ξ + γ + 1;

β(δ − ψ)
βδ + 1

)
.

Finally, we set ψ = 0 and use (4.18) to obtain the mean protein concentration:

E(X) =
αβ

γ + βδ(α + γ)
2F1

(
1, γ − 1, ξ + γ + 1;

ξ

α

)
. (4.32)

In particular, if γ = 1, i.e., if miRNA and mRNA have the same degradation rate,
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then the hypergeometric function is equal to one and mean mRNA concentration is:

E(X) =
αβ

1 + βδ(α + 1)
.

Under the assumption about stable mRNA (γ = 0), the hypergeometric function
becomes a polynomial:

2F1

(
1,−1, ξ + 1;

ξ

α

)
=
αβδ + 1

αβδ
,

and (4.32) reduces to (4.25).

Conclusions

We described the mRNA-miRNA interaction by a Markov process with stochastic
jumps and deterministic drift which incorporates the main biochemical features of
the regulatory motifs. In contrast with previous uses of the framework, the cur-
rent model is two-dimensional, and requires, in particular, the use of the double
Laplace transform. Another distinction is the appearance of the convolution about
axis, which is the nonlocal term of the master equation. This appears because of
a perfect correlation between mRNA and miRNA bursts, i.e., both species are pro-
duced simultaneously and in equal proportions, which notably affected the solution
approach.

We have studied the steady-state moments of the species in feed forward loop,
with the main focus on their analytical expressions. Since the model has nonlinear
kinetics, the moments equations are not closed. Nevertheless, the Laplace transform
still provided a convenient means to derive the explicit moments. Thus, using the
current framework a variety of interactions between species forming an IFFL [93],
e.g. pair holin-antiholin [94], can be also studied.

It is expected that the current approach can be extended to general burst size
distributions or further regulation of the underlying processes. Furthermore, we
believe that the simple model can help in understanding expanded descriptions
that reflect realistic cell scenarios, especially ones involving cell growth and cell
division [95], [96].

50



Chapter 5

Positive feedback on dilution

In this chapter, we study the positive feedback on protein dilution that causes differ-
ences in protein statistics between single-cell and population perspectives, compared
to the one in Chapter 3. This effect can arise from various causes, such as protein
burden or cell resource exhaustion. As a result, the cell growth slows down due to
high protein levels and results in a slower dilution rate.

The chapter consists of two parts: in the first one (Sections 5.1–5.2), we study
univariate models (single cell and population), which track only the protein concen-
tration. We implicitly assume that the cell division occurs randomly, but the high
protein level decreases not only the growth rate but also the rate of cell prolifera-
tion. First, we derive the stationary protein distribution in the single-cell model with
standard assumptions (Section 2.6). Then, we relax the restriction on the burst size
distribution from being solely exponential and assume any non-negative distribution
with a known mean instead; we derive expressions for the stationary moments in
this generalized model. Second, we derive the PDF of the protein concentration in
the cell population, find the condition for population prosperity, and determine the
rate of its growth.

Next, we analyze the weak side of the univariate model: the probability that a
cell becomes infinitely large, which contradicts biological principles. In the second
part of this chapter, we eliminate this problem by studying bivariate models, which
capture both protein and cell volume dynamics. Now, the cell divides when it reaches
a critical volume. We derive PDFs of the protein concentration and cell volume;
we discover that despite a different division mechanism, the protein distribution
remains the same as in univariate models. Finally, we compare the effect of the
positive feedback with the unregulated model of gene expression.

This chapter is based in part on the articles previously published in International
Conference on Computational Methods in Systems Biology [86] and American Con-
trol Conference [97], the contents of which have been adapted and expanded.
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Figure 5.1: (a) Description of the process as a chemical reaction system. (b)
Sample trajectories of the X concentration for different values of the parameter
k, while the size and occurrence time of bursts remain unchanged; parameters of
the simulation are following: α = 1/5, β = 2.

5.1 Single cell model

The model of a single cell studied in this section is an extension of the basic (un-
regulated) model described in Section 2.4. The protein concentration x(t) evolves
in time stochastically according to the following rules. Protein synthesis occurs in
random discrete events with stochastic rate α. Each burst event creates a jump in
the protein concentration, its size B is drawn from exponential distribution with
mean β. In between successive bursts, the protein concentration is diluted due to
the cell growth. In some cases, production of the cell puts greater burden on a
cell and causes its slower growth (biological details are provided in Chapter 1). To
describe the feedback in dilution, we define the dilution rate as a Hill function of
protein concentration. Finally, we assume long-living protein and neglect its natural
degradation rate. Then x(t) decays deterministically according to the differential
equation

ẋ = −xγ(x), γ(x) =
1

1 + kx
. (5.1)

The constant k > 0 is known as the feedback strength, which characterizes how
steeply the dilution rate reacts to increasing protein level. Since half of the maximum
dilution rate is achieved at x = 1/k, a stronger feedback implies that less protein is
needed to halve the cell expansion rate. Increasing the amount of protein leads to
slower dilution, concentration decays slower, and hence positive feedback. Without
loss of generality, we assume that the maximum dilution rate is equal to one. This
effect of increasing the feedback strength k on the protein concentration trajectories
is exemplified in Figure 5.1b. The special case k = 0 corresponds to the absence of
feedback, when the cell grows exponentially and independently of the protein level.
This is an unregulated expression, in which the steady-state protein distribution
p(x) is known to follow a gamma distribution (Section 2.6).

The model can be thought of as a piecewise deterministic formulation of a sim-
ple chemical reaction network with bursty production reaction and deterministic
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decay reaction (Figure 5.1a). The time evolution of the probability density p(x, t)

is described by the Chapman-Kolmogorov equation (2.24):

∂p(x, t)

∂t
=

∂

∂x
(xγ(x)p(x, t))− αp(x, t) + α

β

∫ x

0

e−(x−y)/βp(y) dy . (5.2)

We assume that t = 0 is the initial time at which the concentration of protein
x(t)|t=0 = x0 is fixed and known. Therefore, the pdf is initially equal to the delta
function located at x0:

p(x, t = 0) = δ(x− x0).

In order to find the stationary distribution, we write it as a probability conservation
equation. It is done by gathering the last two terms of (5.2) using the Leibniz
integral rule (2.38), then we set ∂p

∂t
= 0 and integrate the equation, which yields an

integral equation:
x

1 + kx
p(x) = α

∫ x

0

e−(x−y)/βp(y) dy . (5.3)

We use the Laplace transform approach to solve equation (5.3), we obtain the steady-
state distribution and derive formulae for protein moments in case of an unknown
burst size distribution. First, we move the denominator 1 + kx on the right-hand
side of the equation, after we perform rearrangement under the integral sign in the
following way:

xp(x) = α

∫ x

0

(1 + k(x− y) + ky)e−(x−y)/βp(y) dy , (5.4)

which allows us to represent the right side of equation as the sum of three distinct
convolutions (see Definition 2.13):

xp(x) = α ((B ∗ p)(x) + k(xB ∗ p)(x) + k(B ∗ xp)(x)) , (5.5)

where by B(·) we denoted the exponential function, i.e., B(x) = e−x/β, the Laplace
transform of which is known (Property 2.4(a)).

Let us define an image P (s) as a function of a Laplace variable s:

P (s) =

∫ ∞

0

p(x)e−sx dx . (5.6)

Applying the Laplace transform to (5.5), we find:

dP (s)

P (s)
=

(
1

s+ 1/β
− α + 1

s+ 1/β − αk

)
. (5.7)
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The general solution of (5.7) is given by:

P (s) = C
s+ 1/β

(s+ 1/β − αk)α+1
, (5.8)

where C is an arbitrary constant. Note that the right hand side is a power function
of the Laplace variable s, which is shifted by value η = 1/β−αk. In order to return
to the original function p(x), we apply the inverse Laplace transform to the general
solution (5.8) (see Property 2.4(b)):

p(x) = Ce−ηxxα−11 + kx

Γ(α)
.

We set C so that the integral of the right side is equal to one, i.e. that p(x) is
probability density function on the non-negative domain; the steady state probability
density function of protein concentration is given by:

p(x) =
η2β

Γ(α)
(ηx)α−1e−ηx(1 + kx), η = 1/β − αk > 0. (5.9)

The imposed condition η > 0 is necessary for the existence of p(x). In terms of the
model parameters, the condition read

αβ <
1

k
, (5.10)

which can be interpreted from a biological point of view as the requirement that
the average production flow λβ be less than the effective degradation flow (given by
limx→∞ dx / dt = 1/k). Otherwise, the protein dilution is not fast enough to com-
pensate for the protein production rate, and the mean level unboundedly increases
over time; thus, the stationary distribution does not exist.

In the absence of the degradation regulation, i.e k = 0, p(x) becomes probability
density function of the unregulated gene expression (Section 2.6):

p(x) =
1

βΓ(α)

(
x

β

)α−1

e−x/β.

Multiplying (5.9) by xn, n ∈ N, and integration it on the interval [0,∞) give the
value of n-th raw moment:

E(xn) = (1 + nkβ)
(α)n
ηn

, (5.11)

where (α)n = Γ(α+n)/Γ(α) is the Pochhammer symbol (2.2). As the value produc-
tion rate approaches the maximum degradation rate, i.e., αβ ≈ 1/k, the coefficient
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of variation is always finite and is less than 1
1+α

. This is because the existence con-
ditions provide a counterbalancing relationship between the feedback strength and
the intrinsic noise (stochastic production), thus the noise is finite.

5.1.1 Generalisation to any burst size distribution

Let us return to the initial mater equation of the process, but now we suppose that
the random variable B of the burst size has any appropriate distribution, i.e., the
probability density function of B is b(x) : [0,∞) → [0,∞) with the expected value
is equal to β. The Chapman-Kolmogorov equation in the steady state takes form:

d

dx
(xγ(x)p(x)) = α

(
p(x)−

∫ x

0

b(x− y)p(y) dy
)
. (5.12)

We collapse the last two terms in (5.12) as per (2.38) and subsequently integrate it;
afterwards, the equation of the concentration distribution p(x) is given by

x

1 + kx
p(x) = α

∫ x

0

B̄(x− y)p(y) dy .

where B̄(x) is CCDF corresponding to b(x). Performing of the same rearrangement
as in (5.4) and application of the Laplace transform to the result yields ODE

P ′(s) = P (s)
B(s)− kB′(s)

kB(s)− 1
α

, (5.13)

where, by analogy with P (s) in (5.6), we denote by B(s) a Laplace image of B̄(x)

B(s) =

∫ ∞

0

B̄(x)e−sx dx . (5.14)

The advantages of using the complementary cumulative distribution function (CCDF)
and its Laplace image, in the case when the burst size distribution is unknown, is
following. First, the mean value of a non-negative random variable, such as the
burst size, can be expressed through CCDF as its integral over the R+, which is
related to B(s) as

B(0)
∣∣
s=0

= β.

Next, we express the k-th derivative of B(s) in a form containing the raw moments:

B(k)(s) =
(−1)k

k + 1

([
B̄(x)e−sxxk+1

]∞
0
+

∫ ∞

0

xk+1(b(x) + s B̄(x))e−sx dx

)
,
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where the first term in brackets is always zero. Then we set s = 0 and obtain:

B(k)(0) = (−1)kE(B
k+1)

k + 1
, (5.15)

which allows us to obtain exact moments of B even without knowing explicitly the
burst size distribution.

In order to obtain statistics of the protein concentration, we use the cumulant
generating function

K(s) = lnE(esx) ≡ ln

∫ ∞

0

p(x)esx dx , (5.16)

and the corresponding cumulants of n-th order:

κn =
dnK(s)

dsn

∣∣∣
s=0

, n ∈ N,

which by definition is equal to mean, the variance, and the third central moment
of the random variable X for n ∈ {1, 2, 3}, respectively; the trivial case of n = 0

leads to κ0 = 0. Combining (5.6) and (5.16) yields K(−s) = lnP (s), so that the
cumulants of X are

(−1)nκn =
dn lnP (s)

dsn

∣∣∣
s=0

,

whereas the natural logarithm of the Laplace image P (s) we obtain directly from
ODE (5.13); the cumulants of interest are

−κ1 =
B′(0)−B(0)/k

B(0)− 1/αk
,

κ2 = B′(0)
B′(0)− 1/(αk2)

(B(0)− 1/(αk))2
−B′′(0)

1

B(0)− 1/(αk)
,

−κ3 = 2(B′(0))2
B′(0)− 1/(αk2)

(B(0)− 1/(αk))3
−B′′(0)

3B′(0)− 1/(αk2)

(B(0)− 1/(αk))2
+B′′′(0)

1

B(0)− 1/(αk)
.

Using (5.15), we obtain:

E(x) =
E(B2) + 2β/k

2η̂
,

Var(x) = ν
E(B2)

2η̂2
+

E(B3)

3η̂
,

µ3(x) = ν
E2(B2)

2η̂3
+

E(B3)

3η̂2
(E(B2) + ν) +

E(B4)

4η̂
,

where µ3(x) is the third central moment and ν = E(B2)/2− 1/(αk2); the constant
η̂ = 1/αk− β > 0 here represents the existence condition with the same interpreta-
tion as for (5.10).
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Figure 5.2: The time evolution of a sample population from a single cell to eight
of them. The red dots mean time and concentration, at which given mother cell
was divided into two daughter cells. An unique colour was assigned to each cell,
so to show how the protein concentration changes while it exists. Parameters of
the simulation are following: α = 1.9, β = 0.5, k = 1 x0 = 1.

5.2 Population model

To extend the single-cell framework to a population one, we elaborate on the dy-
namics of cell proliferation. Firstly, during cell division, a mother cell splits into two
identical daughter cells, each inheriting identical protein level to those of the mother.
During the cell cycle, the protein dynamics remains identical to those defined in Sec-
tion 5.1. Finally, the probability that a cell divides depends on its protein content
and it follows the same rate as dilution. Therefore, division events are modelled
by a non-homogeneous Poisson process with rate γ(x) = 1/(1 + kx) and the net
population growth rate g(x, t) is also equal to γ(x). The sample trajectories of cells
in such population are shown in Fig. 5.2.

The expected population density h(x, t) of cells with concentration x at time t
satisfies the population balance equation (2.34):

∂h(x, t)

∂t
=

∂

∂x

(
x

1 + kx
h(x, t)

)
+
h(x, t)

1 + kx

+ α

∫ x

0

b(x− y)h(y, t) dy − αh(x, t),
(5.17)

where b(·) is the probability density function of the random burst size, which was
described in details in (5.12). The population balance equation differs from the
Chapman-Kolmogorov equation by the inclusion of a growth term, which is equal
to the product of the cell count h(x, t) and the dilution rate 1/(1 + kx).

For large enough t, it is possible to represent the population function h(x, t) in
a separable form, i.e.,

h(x, t) = eλtp(x), (5.18)
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then (5.17) becomes

p(x)

1 + kx
− λp(x) + d

dx

(
xp(x)

1 + kx

)
− α d

dx

∫ x

0

B̄(x− y)p(y) dy = 0, (5.19)

where the last term and the function B̄(·) were derived as per (2.38). Among the
possible eigenvalues λ, we will look for the one that has the largest real part – the
principal eigenvalue. In the large time limit, the principal eigenvalue gives the effec-
tive growth rate, and the principal eigenvector p(x) gives the population distribution
of the protein distribution. Below we find explicit results (5.28) and (5.31) for both.

We define an auxiliary function,

q(x) =
p(x)

1 + kx
, (5.20)

and substitute it into (5.19); afterwards we apply the Laplace transform, which
yields

Q(s)− λP (s)− sQ′(s)− αsB(s)P (s) = 0, (5.21)

where P (s) and Q(s) are the Laplace images of functions p(x) and q(x), respec-
tively, defined by (5.14). Applying the Laplace transform directly to the function
q(x) (5.20), one can obtain:

P (s) = Q(s)− kQ′(s),

which is used to transform (5.21) into an ODE for Q(s):

dQ(s)

Q(s)
=

λ+ αsB(s)− 1

λk + αksB(s)− s
ds . (5.22)

Despite the separable form of this equation, additional complexity is brought by
the generalisation of the burst size distribution. However, we assume that B̄(x) is
CCDF of the exponential distribution with mean β, the Laplace image of which is
known; then (5.22) simplifies to

dQ(s)

Q(s)
=

1−λ
β

+ s(1− ρ)
−λk

β
− s(kρ− 1

β
) + s2

ds , ρ = α + λ. (5.23)

The solution approach requires the partial fraction decomposition of the right-hand
side of (5.23). The quadratic in the denominator has two real roots

s1,2 =
1

2

(
kρ− 1

β
±
√
D

)
, D = (kρ+

1

β
)2 − 4αk

β
, (5.24)

where s1 is strictly positive and s2 is strictly negative for any positive values of
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parameters α, β, λ and k. The decomposition of (5.23) takes the form:

dQ(s)

Q(s)
=

A1

s− s1
+

A2

s− s2
, (5.25)

where A1 and A2 are defined by

A1,2 =
1− ρ
2
± 1− ρ+ 2α + βkρ(1− ρ)

2β
√
D

. (5.26)

The solution of the ODE (5.25) is

Q(s) = C(s− s1)A1(s− s2)A2 . (5.27)

The Laplace transform (5.27) has to be analytic in the complex half-plane Re(s) > 0.
Therefore, A1 ∈ {0, 1, 2, . . .}. In particular, the principal eigenvalue is obtained by
setting A1 = 0, which implies

λ = 1− αkβ

kβ + 1
, λ > 0. (5.28)

The imposed condition on the eigenvalue λ, which represents the exponential growth
rate of cell numbers in a population, specifies that λ must be non-negative for the
population to thrive. We show that A1 = 0 indeed provides the principal eigenvalue
and study further eigenvalues for A1 ∈ N in Section 5.2.1.

We substitute (5.28) into (5.24) and (5.26) and simplify; the resulting values are
strictly negative, and we introduce additional symbols σ, ξ for their opposite values,
which are strictly positive:

s2 =
αk

kβ + 1
− 1

β
, σ = −s2 > 0,

A2 = −
α

kβ + 1
, ξ = −A2 > 0.

(5.29)

Inserting s = 0 into (5.21) and using the normalisation condition P (0) = 1 yield

Q(0) = λ, (5.30)

which is used to find the value of C in (5.27).
Applying the inverse Laplace transform to (5.27), we obtain

q(x) =
βσ2

Γ(ξ)
e−σx(σx)ξ−1,
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i.e., by relation (5.20),

p(x) = (1 + kx)
βσ2

Γ(ξ)
e−σx(σx)ξ−1, (5.31)

where the constants σ and ξ are defined by (5.29). Note that without regulation,
as k = 0, the PDF of the protein concentration in the population is identical to the
unregulated one in the single cell (2.40). We use the definition E(xn) =

∫∞
0
xnp(x) dx

to obtain the n-th raw moment expressions for any given n:

E(xn) = (1 + nkβ)
(ξ)n
σn

,

where (ξ)n is the Pochhammer symbol (2.2), and the integral is convergent only is
σ > 0. The mean concentration of the protein is

E(x) =
αβ(1 + kβ)

1 + kβ − αβk
.

Leaving technical reasons aside, the necessary condition for a cell to survive is finit-
ness of its mean value; on the other side, as it was mentioned, the population exists
only if λ > 0. Both produce an identical existence condition:

α− 1 <
1

kβ
. (5.32)

Similarly to the single-cell model, the population exists, if certain balance between
the production and dilution rates is maintained. Otherwise, the protein dilution is
not fast enough to compensate for the protein production rate, and the mean level
unboundedly increases over time; thus, the stationary distribution does not exist.
Subsequently, the cell with high protein concentration is overburdened and has low
probability to proliferate, and the population growth terminates (this statement
is further elaborated in Section 5.2.2). The population always exists in the low
frequency regime (α < 1), but otherwise the population distribution exists for values
of λ that satisfy (5.32). This is a weaker condition than (5.10) that was found
necessary for the existence of the stationary distribution in a single cell setting: a
population distribution may exist even if the single cell distribution does not.

In Appendix B, we further study the statistics of the single-cell and population
frameworks. Since cells with higher protein levels proliferate more slowly, there is
an over-representation of cells with low protein concentrations. This results in a
lower mean concentration in the population framework compared to the single-cell
framework. After analyzing protein noise using the coefficient of variation, we find
that protein concentration at the population level is relatively noisier than that in
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n increases

n increases

Figure 5.3: The eigenvalues λ∗
n are roots of (5.34) with the greatest real part.

(Left) λ∗
n as function of the burst frequency α, other parameters are fixed: k = 0.5,

β = 10; (Right) λ∗
n as the function of the effective degradation rate kβ (α = 1.35).

Vertical dashed lines represent the existence condition σ > 0 in both parameter
spaces.

the single-cell approach. This result can also explain why, for the same parameters,
the mean protein concentration in the population is lower than that at the single-cell
level. Finally, while the single-cell distribution is more heavy-tailed (compared to
the gamma distribution), the population distribution becomes more light-tailed due
to a larger proportion of cells with low protein concentration.

5.2.1 Other eigenvalues

Let us study A1(ρ), where the variable ρ is the shifted by burst frequency eigenvalue
λ, i.e. ρ = α + λ:

A1(ρ) =
1− ρ
2

+
2α + (kρ+ 1)(1− ρ)
2
√

(kρ+ 1)2 − 4αk
, k ≡ kβ.

In addition to A1 = 0, permissible values of the function A1, according to (5.27),
are natural numbers; we find further eigenvalues by setting A1(ρ) = n:

(2n− 1 + ρ)
√

(kρ+ 1)2 − 4αk = 2α + (kρ+ 1)(1− ρ), n ∈ N. (5.33)

Then the eigenvalues are the roots of a following cubic polynomial:

pn(ρ) =nk
2ρ3 + k

(
n(n− 1)k + 2n

)
ρ2

+
(
2kn(n− 1) + n+ α(k + 1− 4kn)

)
ρ

+ n(n− 1)(4αkn+ 1)− α(k + 1 + α).

(5.34)

Although we do not provide analytical proof, numerical computations provide the
following properties of (5.34). The discriminant ∆n of the polynomial pn(ρ) is
strictly negative for any permissible set of values (α, β, k) and n > 0. It implicates
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Figure 5.4: Spectral gap as the function of the burst frequency (left panel) and
the feedback intensity (right panel). Break of the lines occurs, when the existence
condition (5.32) is reached.

that (5.34) has a single real root and a pair of complex conjugate roots. Moreover,
the greatest real part has the real root, which we denote by λ∗n, for which hold the
following inequality:

λ∗n < λ∗n+1, n ∈ N0.

In Figure 5.3 are shown eigenvalues λ∗n as functions of the burst frequency α (left
panel) and the effective degradation rate kβ (right panel). Note, that p0(n) indeed
provides the dominant eigenvalue.

Let us take a closer look at p1(ρ):

p1(ρ) = k2ρ3 + 2kρ2 + (1− 3αk + α)ρ− α(k + 1 + α). (5.35)

The discriminant of (5.35) is:

∆1 = −α(1 + α− k)2k2(4 + 27αk2),

which is, as all involved constants are positive, strictly negative. It indicates presence
of one real root and two complex conjugate roots.

Firstly, to find λ1, we solve (5.35) using the R package polyroot and subsequently
choosing the real root (as is is mentioned in Section 5.2.1 it has the greatest real
part). In Figure 5.4 are shown graphs of spectral gap |λ1 − λ0|. Firstly, we treat it
as a function of the burst frequency α, then for each fixed value of kβ, it is strictly
decaying on an interval of permissible α (left panel). Next, for given set of values
for α, we study Λ as a function of the production rate kβ, which reaches maximum
around zero. Smaller spectral gap then corresponds to such values of the parameters,
which are close to the population existence condition (5.32).

5.2.2 Consequences for the cell volume

Here we explore the implicit consequences for the cell volume. During the cell cycle
of a cell that begins at t = tb and ends at t = te, the volume increases exponentially
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with rate that is equal to the dilution rate:

dv

dt
= γ(x(t))v, tb < t < te.

The cell volume v(t) is a continuous function for tb < t < te. It has a discontinuous
derivative at protein burst time points because of the discontinuity in the protein
concentration x(t).

Let vb = v(tb) and ve = v(te) be the initial and final volume of the cell, respec-
tively. The initial volume vb is assumed to be known. The final volume ve is a
random variable because it depends on te, which is random. The propensity to end
the cell cycle (2.30) can be rewritten as

Prob[ve ∈ (v, v + dv)|ve > v] =
dv

v
+ o(dv), v > vb.

This implies that the complementary cumulative distribution function of ve satisfies

Prob[ve > v] = exp

(
−
∫ v

vb

dṽ

ṽ

)
=
vb
v
, v > vb,

which can be expressed in terms of probability density function of ve as

fve(v) = −
d

dv
Prob[ve > v] =

vb
v2
, v > vb.

We see that the distribution of the final volume is heavy tailed. The mean value of
the final volume is infinite. To address this, let us include the volume explicitly in
the model and do a different volume sensing mechanism.

5.3 Bivariate model with explicit cell volume v(t)

Here we introduce bivariate model to the dilution feedback problem. We preserve
all dynamics of protein concentration in the single cell, which were described in
Section 5.1. During cell division, a mother cell splits into two identical daughter
cells, each inheriting half of the mother’s volume and protein amount; thus, the
protein level in the daughter cells is equal to the mother’s. The volume v(t) remains
strictly increasing during the cell cycle. In particular, between successive bursts, the
cell volume increases with a concentration dependent rate and the concentration is
diluted according to differential equations

v̇

v
= − ẋ

x
= γ(x) =

1

1 + kx
. (5.36)
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The rule (5.37), which triggers division event, is based on a biological concept of a
Sizer [98]. When the cell volume reaches a given threshold 2v∗, a cell division event
occurs, and the volume is immediately halved

v = 2v∗ → v = v∗. (5.37)

Typical protein and volume trajectories of a single cell line are shown in Figure 5.5a.

Bivariate Chapman–Kolmogorov equation

In the single-cell model, we are looking at a single cell line. We do not follow the
other daughter cell that is created in a cell division. The model is then a piecewise
deterministic bivariate Markov process x = (x(t), v(t)) ∈ R2

+, which was introduced
in Section 2.4. In this case, the deterministic motion of x (2.21) is given by (5.36).
The random jumps of x(t) remain exponentially distributed; the volume v(t) has a
purely deterministic trajectory with discontinues due to the cell division rule (5.37)
and nonsmooth points caused by bursts.

Let f(x, v, t) denote the probability density function (PDF) of the random vector
x = (x(t), v(t)) at time t. We have the initial condition

f(x, v, t = 0) = δ(x− x0)δ(v − v0),

where x0 > 0 and v0 > 0 are known initial concentration and volume. We thereby
assume that the initial volume is less that the critical volume at which a cell division
event is triggered: v0 < 2v∗.

For t > 0, PDF f(x, v, t) satisfies a bivariate Chapman–Kolmogorov equation
(2.24), which is fitted for the dilution problem in Section 5.3.1. We assume that the
protein concentration and cell volume are independent random variables at steady
state. Thus a unique normalised stationary solution to the Chapman–Kolmogorov
equation (the stationary distribution) can be found in a separable form:

f(x, v) = p(x)g(v), x > 0, v∗ < v < 2v∗,

where p(x) and g(w) are PDFs of the protein concentration and the cell volume
respectively.

The stationary distribution existence condition (2.29) requires the process to be
irreducible and aperiodic. However, in the absence of feedback (k = 0), the cell cycle
length is equal to the doubling time T = ln 2 of the exponential function, and the
cell volume v(t) is a T -periodic function (Figure 5.5b). Because of the periodicity,
the time-dependent pdf f(x, v, t) does not converge to the stationary distribution
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Figure 5.5: Sample trajectories of the concentration x(t) and the volume v(t) in
a single cell affected by (a) the strong feedback as k = 2, (b) the absence of the
feedback, i.e., k = 0; other parameters of simulations are α = 0.9, β = 5.

f(x, v) if k = 0. The inclusion of feedback breaks the periodicity (Figure 5.5a).
Therefore, for k > 0,

f(x, v, t) ∼ f(x, v), t→∞,

i.e. the time-dependent distribution converges to the stationary distribution in the
large-time limit (the ergodic property).

5.3.1 Single cell with explicit volume dynamics

The probability for the cell to be of volume v∗ ≤ v ≤ 2v∗ and to have the protein
concentration x > 0 at time t > 0 is given by the joint probability density function
is f(x, v, t); its time evolution is described by Chapman-Kolmogorov equation:

∂f(x, v, t)

∂t
=

∂

∂x
(xγ(x)f(x, v, t))− ∂

∂v
(vγ(x)f(x, v, t))

+
α

β

∫ x

0

e−
x−y
β f(y, v, t) dy − αf(x, v, t).

(5.38)

The initial and boundary conditions are:

f(x, v, 0) = δ(x− x0)δ(v − v0), (5.39a)

f(x, 2v∗, t) =
1

2
f(x, v∗, t), (5.39b)

where x0 is initial protein concentration in the cell, v0 is its initial volume. The
Chapman–Kolmogorov equation (5.38) is a partial integro-differential equation. The
differential operator on the right hand side of (5.38) drives the drift of the prob-
ability mass due to the deterministic flow (5.36). The integral operator in (5.38)
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provides the transfer of probability mass due to instantaneous protein bursts. The
boundary condition (5.39b) captures the halving of cell volume in cell division. In-
tegrating (5.38) over the state space (x, v) ∈ (0,∞) × [v∗, 2v∗] confirms that the
total probability

∫∞
0

∫ 2v∗

v∗
f(x, v, t) dx dv remains constant over time for solutions

f(x, v, t) to (5.38). The boundary fluxes thereby cancel thanks to the boundary
condition (5.39b).

Since our aim is to find a stationary distribution f(x, v), we set ∂f/∂t = 0 and
subsequently apply the Leibniz integral rule (2.38) to the last two terms, which
yields an integral equation:

∂

∂x
(xγ(x)f(x, v))− ∂

∂v
(vγ(x)f(x, v))− α ∂

∂x

(∫ x

0

e−
x−y
β f(y, v) dy

)
= 0, (5.40)

the boundary condition for which is the same as (5.39b).
We use the Fourier method of separation variables, i.e. we assume that f(x, v)

can be represented as a separable function

f(x, v) =
q(x)g(v)

γ(x)
,

The marginal protein stationary distribution is then p(x) = q(x)/γ(x) and that of
the cell volume is g(x). We substitute the new representation of f(x, v) into (5.40)
and rearrange the result so that on the left-hand side all terms depend only on the
variable x, and on the right-hand side only on v:

(xq(x))′

q(x)
− α

q(x)

d

dx

∫ x

0

e−
x−y
β
q(y)

γ(y)
dy =

(vg(v))′

g(v)
= ξ. (5.41)

Since both sides are independent from one another, each side must be equal to a
constant, which we denoted as ξ. We rewrite (5.41) and add the boundary condition
on g(v):

(vg(v))′ + ξg(v) = 0, g(2v∗) =
1

2
g(v∗) (5.42a)

(xq(x))′ − α d

dx

(∫ x

0

e−
x−y
β
q(y)

γ(y)
dy

)
− ξq(x) = 0. (5.42b)

First, we solve equation (5.42a), which is an ordinary differential equation of the
first order. The general solution is

g(v) = Cv−ξ−1; (5.43)

upon applying the boundary condition, we find that ξ = 0. Since g(v) is a probability
distribution, the integral of g(v) over the interval (v∗, 2v∗) must be equal to one.
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The stationary distribution of the cell volume is thus

g(v) =
1

ln(2)v
. (5.44)

The mean volume of the cell E(V ) = v∗

ln(2)
.

We proceed with the second equation (5.42b); after we substitute ξ = 0, it
reduces to the Volterra integral equation:

xq(x) = α

∫ x

0

e−
x−y
β (1 + ky)q(y) dy ,

the solution of which is known (see Section 5.1):

p(x) =
η2β

Γ(α)
(1 + kx)(ηx)α−1e−ηx, η = 1/β − αk > 0. (5.45)

Bivariate branching process

We elaborate the population framework described in Section 2.5. At the end of the
cell cycle triggers a branching (division) event, when the current process (the mother
cell) is terminated and replaced with two new bivariate processes (daughter cells):

(xi(t), vi(t)), tib ≤ t < tie, i = 1, 2, . . . ,

where tib and tie denote the beginning and the end of the cell cycle of the ith cell,
and xi(t) gives the protein concentration at time t of the ith cell and vi(t) gives its
volume. The time te in now the moment, when the mother cell volume reaches a
given threshold 2v∗.

General description and properties of the bivariate branching process remains
the same as it was described for univariate one in Section 2.5. The composition of
the population at time t can be represented by the empirical population density (or
empirical measure)

m(x, v, t) =
∑

i:tib<t<t
i
e

δ(x− xi(t))δ(v − vi(t)).

The measure is defined on the two-dimensional state space (0,∞) × [v∗, 2v∗]. The
empirical measure is not normalised:

n(t) =

∫ 2v∗

v∗

∫ ∞

0

m(x, v, t) dx dv = #{i : tib < t < tie},

gives the total number of cells at time t.
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Let us consider the expected value of the empirical population density

h(x, v, t) = Em(x, v, t).

At the initial time t = 0, we have a single cell with non-random initial concentration
x0 and initial volume v0, so that

h(x, v, 0) = m(x, v, 0) = δ(x− x0)δ(v − v0).

For t > 0, the expected population density h(x, v, t) satisfies a population balance
equation. This is formulated in Section 5.3.2. The large-time behaviour of the
population balance equation is characterised by its principal eigenvalue λ and the
associated eigenfunction f(x, v) and the adjoint eigenfunction w(x, v). Spectral
decomposition implies that the expected (non-random) population density satisfies

h(x, v, t) ∼ w(x0, v0)e
λtp(x)g(v), t→∞, (5.46)

The adjoint eigenfunction w(x0, v0) > 0 characterises the influence of initial condi-
tion. We do not determine its functional form. Similarly to what was said in the
single cell model, (5.46) holds only in the aperiodic case (k ̸= 0).

By the theory of supercritical branching processes [82], [83], the (random) em-
pirical population density satisfies

m(x, v, t) ∼ W (x0, v0)e
λtp(x)g(v), t→∞, (5.47)

where W (x0, v0) > 0 is a random variable dependent on initial data such that
EW (x0, v0) = w(x0, v0). Equivalently,

n(t) ∼ W (x0, v0)e
λt,

m(x, v, t)

n(t)
∼ p(x)g(v), t→∞. (5.48)

The total population n(t) increases exponentially. The influence of the initial con-
dition and the initial low population noise is encompassed in the random pre-
exponential factor W (x0, v0). The protein concentration and cell volume are inde-
pendent of each other in a large population. The normalised protein concentration
distribution is the same as in the univariate population model.

5.3.2 Population with explicit volume dynamics

The expected population density h(x, v, t) of cells with concentration x > 0 and
volume v∗ ≤ v ≤ 2v∗ at a particular point of time t ≥ 0 satisfies a population balance
equation. In the interior of the state space (x > 0, v∗ < v < 2v∗), the population
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Figure 5.6: (Left) the time evolution of a sample cell population, where an
individual colour is assigned to each cell. We plot the protein concentration in the
cell and its volume, and mark the division time (vertical lines). (Right) The time
evolution of the log-scaled sample population size in four different simulation runs
with the same initial conditions and parameters values α = 0.9, β = 0.5, k = 2,
and v∗ = 1.5 (dashed lines); the solid lines correspond to the exponential growth
with the rate constant (5.28), shifted by the random factor log10W (x0, v0), whose
specific values were estimated for each simulation using linear regression. Each
simulation has random fluctuations at the beginning and afterwards converges to
the expected exponential growth.

balance equation coincides with the Chapman–Kolmogorov equation (5.38):

∂h(x, v, t)

∂t
=

∂

∂x
(xγ(x)h(x, v, t))− ∂

∂v
(vγ(x)h(x, v, t))

+
α

β

∫ x

0

e−
x−y
β h(y, v, t) dy − αh(x, v, t).

(5.49)

The initial and boundary conditions are:

h(x, v, 0) = h0(x, v), (5.50a)

h(x, 2v∗, t) =
1

4
h(x, v∗, t), (5.50b)

where h0(x, v) in (5.50a) is an initial population density. The extra factor of two
in the boundary condition (5.50b) compared to the previous boundary condition
(5.39b) reflects the cell doubling at the end of a cell cycle in the population scenario.

The population grows in time, and we assume that h(x, v, t) has the following
separable form:

h(x, v, t) = eλt
q(x)g(v)

γ(x)
,
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which we substitute into (5.49). Doing so yields

(vg(v))′ + ξg(v) = 0, g(2v0) =
1

4
g(v0), (5.51a)(

λ

γ(x)
− ξ
)
q(x)− (xq(x))′ + α

d

dx

∫ x

0

q(y)

γ(y)
e−

x−y
β dy = 0, (5.51b)

where the boundary condition for the volume dependence is derived from (5.50b). As
we can see, equation (5.51a) is equivalent to (5.42a) except the boundary condition;
hence the general solution remains to be (5.43), and the boundary condition yields
ξ = −1; then the distribution of the cell volume and its mean value are:

g(v) =
2v∗

v2
, E(v) = 2v∗ ln(2). (5.52)

Finally, we substitute the obtained value of ξ = −1 into (5.51b), leading to the
integro-differential equation:

q(x)− λ(1 + kx)q(x) + (xq(x))′ − α d

dx

∫ x

0

(1 + ky)q(y)e−
x−y
β dy = 0,

This is the same equation as (5.19), wherein we have already replaced p(x) with
q(x) and chose the exponential burst kernel for B(x). The solution is following:

p(x) = (1 + kx)
βσ2

Γ(ξ)
e−σx(σx)ξ−1, (5.53)

where the constants σ and ξ are given by (5.29).
The obtained distributions (5.52)–(5.53) were verified using the stochastic simu-

lations. The recursive algorithm mimicking population extension, the algorithm for
bivariate modelling, and required formulas are provided in Appendix A2.

Conclusions

The main result is the large-time distribution of cell volume (5.44) and protein
concentration (5.45) in the single cell framework and in the population framework,
(5.52) and (5.53) respectively. Interestingly, the two are independent in the large-
time limit (but interdependent transiently in the presence of the dilution feedback).
We expect that the large-time independence carries over to more complex models
of cell division than the reset rule (5.37). However, additional coupling between
protein and cell size (e.g. volume-dependent production, partitioning noise) may
introduce a dependence between the two variables [99].

The single-cell stationary distributions (5.44)–(5.45) exist if the product αβ

70



(a)

0.00

0.25

0.50

0.75

1.00

0 2 4 6
Concentration, x

D
en

si
ty

, p
(x

)

(b)

0.0

0.5

1.0

1.5 2.0 2.5 3.0
Volume, v

D
en

si
ty

, g
(v

)

k = 0

Population

Single cell

(c)

0.0

0.2

0.4

0.6

0 2 4 6
Concentration, x

D
en

si
ty

, p
(x

)

(d)

0.0

0.5

1.0

1.5 2.0 2.5 3.0
Volume, v

D
en

si
ty

, g
(v

)

k = 0.7

Population

Single cell

Figure 5.7: The effect of absence (the first row) and presence (the second row)
of feedback in dilution on the large-time distributions of protein concentration x
and cell volume v. Parameters are as follow: α = 1.5, β = 0.5, k = 0.6, v∗ = 1.5.

of burst frequency and burst size is less than the maximal dilution rate 1/k =

limx→∞ x/(1 + kx). Clearly, in the alternative case (αβ > 1/k), the build up of
protein prevents stationarity [100]. In the population scenario, the large-time distri-
bution (5.52)–(5.53) exists if the large-time population growth rate constant λ (5.28)
is positive. In the alternative scenario ((α − 1)β > 1/k), the build up of protein
overburdens the cells and stalls the population growth. We note that this cannot
happen in the low burst frequency (high noise) scenario α < 1.

In the absence of dilution feedback, the volume process is periodic and hence does
not converge to its stationary distribution (Figure 5.5b). Periodicity also appears
for more complex cell division mechanisms than (5.37) as long as (i) the volume
grows exponentially and (ii) the cell divides into two equal halves [101]. Feedback
in dilution makes the growth protein-dependent and hence non-exponential. As a
consequence, we get rid of the periodicity (Figure 5.5a) and obtain ergodicity i.e.
convergence of the large-time distribution (Figure 5.6).

Figure 5.7 visualises the effects of dilution feedback and population framework
on the protein and volume distribution. Inclusion of feedback tilts the concentra-
tion distribution to the right (Figures 5.7a and 5.7c). Inclusion of feedback does not
affect the volume distribution (Figures 5.7b and 5.7d). Population volume distri-
bution is tilted to the left compared with the single cell distribution (Figures 5.7b
and 5.7d). Without feedback, the concentration distribution is the same gamma
distribution in a population and for a single cell (Figure 5.7a). With feedback, the
population distribution is tilted to the left compared to the single cell distribution
(Figure 5.7c). Consequently, the fraction of cells above a concentration threshold in

71



the population is smaller than the fraction of time a single cell has concentration
above the threshold. This has important consequences for drug-tolerant persisters in
microbial and cancer cells that will be rarer than as predicted by classical simulation
if the feedback is present [102], [103].
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Chapter 6

Negative feedback on dilution

This chapter presents ongoing research and preliminary findings, reflecting the state
of our current studies of negative feedback loop on the protein dilution.

The essential core of the single cell model in this case of feedback remains iden-
tical to one in Section 5.2. The difference lays in the response function γ(x), which
remains of the Hill type, but now reflects negative feedback:

γ(x) =
kx

1 + kx
. (6.1)

The Chapman-Kolmogorov equation of the probability density function p(x, t) is
identical to (5.2). Then it simplifies to an integral equation:

kx2

1 + kx
p(x) = α

∫ x

0

e−(x−y)/βp(y) dy . (6.2)

A preparatory step is similar to one in (5.20), we introduce an auxiliary function
q(x) = p(x)

1+kx
and its Laplace transform Q(s) = L[q(x)](s). The substitution of q(x)

into (6.2) leads to a following equation:

kx2q(x) = α

∫ x

0

e−(x−y)/βq(y)(1 + ky) dy .

Subsequently we apply the Laplace transform and obtain a linear second order dif-
ferential equation: (

s+
1

β

)
Q′′(s) + αQ′(s)− α

k
Q(s) = 0, (6.3)

which is can be converted to the (regular) Bessel differential equation [104], then
the solution is following:

Q(s) =

(
s+

1

β

) 1−α
2
(
C1J1−α

(
2i

√
α

k

√
s+

1

β

)
+ C2Y1−α

(
2i

√
α

k

√
s+

1

β

))
,
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where J1−α(·) and Y1−α(·) are the Bessel functions of the first kind (2.12) and the
second kind (2.13), respectively. To make the range of the solution real, we use their
modified versions [65]:

Q(s) =

(
s+

1

β

) 1−α
2
(
C̃1I1−α

(
2

√
α

k

√
s+

1

β

)
+ C̃2K1−α

(
2

√
α

k

√
s+

1

β

))
,

where I1−α(·) and K1−α(·) are the modified Bessel functions of the first and the
second kinds (2.15) and (2.16), respectively. Considering that the Laplace transform
of must be bounded function, but I1−α is an increasing function on R+, we set C̃1 = 0.
The used properties of Bessel functions and modified Bessel functions are provided
in Section 2.1.

To express the final form of Q(s), we use the following integral form of the
modified Bessel function of the second kind (2.17):

K1−α(x) =
1

2

(x
2

)1−α ∫ ∞

0

exp
{
−t− x2

4t

}
1

t2−α
dt ,

then

Q(s) =

(
s+

1

β

)1−α ∫ ∞

0

exp
{
−t− α(s+ β−1)

kt

}
1

t2−α
dt . (6.4)

Finally, substitution x
(
s+ 1

β

)
= t shows that

Q(s) = C

∫ ∞

0

e−sxexp
{
−x
β
− α

kx

}
xα−2 dx . (6.5)

is by definition the Laplace image, the original function is following:

q(x) = Cxα−2exp
{
−x
β
− α

kx

}
.

The steady state probability density function of the protein concentration regu-
lated by negative feedback loop is given by

p(x) = C(1 + kx)xα−2exp
{
−x
β
− α

kx

}
, (6.6)

where the value of the constant C is chosen so that p(x) becomes a valid density
function, i.e., its integral over R+

0 is equal to one:

C =
(βξ)1−α

22−α
(
K1−α(ξ) +

√
αβkK−α(ξ)

) , ξ =

√
4α

kβ
.

In Fig. 6.1 (left panel) is shown p(x) for different parameter values. In Ap-
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Figure 6.1: (Left) Influence of the negative feedback on PDF p(x) compared to
positive feedback. By grey dots are marked distributions that are the closest to
unregulated case. (Right) The mean protein concentration as the function of the
feedback strength k. Parameters values are α = 2, β = 0.5.

pendix A3 we use stochastic simulations to prove the obtained distribution (6.6).
The mean protein concentration satisfies:

E(x) =
βξ

2

K−α(ξ) +
√
αβkK−α−1(ξ)

K−α+1(ξ) +
√
αβkK−α(ξ)

.

It follows from the form of the pdf (6.6) that the k-th moment can be obtained for
any given k ∈ N. We recall that the mean concentration in PFB (5.11) is equal
to unregulated case (2.41) as k = 0; as k reaches η = 0− it diverges. As it is
shown in Figure 6.1, in NFB, the mean concentration gradually converges to value
in unregulated case (2.41) (dashed horizontal line). In addition, a single cell exists
for any set of parameter (α, β, k).
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Concluding Remarks and Prospects

We conclude this work by summarising our key findings, discussing the limitations
of our approach, and introducing potential future research directions. We have
developed analytical frameworks for both single-cell analysis and cell populations,
providing robust tools to explore the dynamic behaviour of gene expression through
various control circuits. Our investigation focused on the regulation of burst fre-
quency, protein dilution, and interactions via auxiliary species.

Specifically, we examined how negative feedback on burst frequency occurs when
a protein inhibits the accessibility of its promoter. We obtained the protein distribu-
tion for the limiting Hill-type response function and demonstrated that the protein
distributions in a single cell and a cell population are identical for any general form
of the response function.

The feed-forward type of regulation emerges when mRNA and its antagonist –
miRNA – are co-produced from a common coding sequence. We show that in the
low-noise regime, it perfectly adapts to disturbances in production parameters and
maintains the mean mRNA level constant. If noise is moderate, then this property
is partially lost. Yet, the mean concentration is proven to be less volatile than in
the case of negative feedback on frequency.

In cases where protein concentration affects cell growth, we observe feedback
on dilution. We primarily consider scenarios where an excessive amount of protein
imposes a burden on cellular mechanisms and slows down cell expansion. Below, we
summarise the results:

• The protein distribution is unaffected by cell division: both randomly triggered
and deterministically conditioned cell division mechanisms yielded identical
protein distributions.

• In the absence of feedback, both the single cell and population exhibit a pro-
tein distribution revert to the gamma distribution of the unregulated gene
expression.

• The inclusion of feedback has an opposite effect on PDFs at the single-cell
and population levels. In a single cell, the strengthening of feedback means
the cell spends more time with a higher protein concentration, so the distri-
bution flattens. In the cell population, the difference is caused by cells with
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low protein concentration: they proliferate faster, produce descendants with
also low protein concentration, and this effect accumulates. Thus the protein
distribution becomes narrower and more right-skewed.

• At both levels, there is a similar condition for the distribution existence, which
prevents overproduction of protein.

The negative feedback on dilution occurs when a specific protein is essential for
cell growth, and higher concentrations accelerate this growth. Although this is still
a work in progress, we demonstrate that it exhibits the expected effects, opposite
to those of positive feedback. If the feedback is low, then the protein accumulates
within the cell and the mean concentration diverges; sufficiently high feedback, on
the other hand, has the same characteristics as unregulated expression.

In reflecting on the limitations of our work, several challenges become appar-
ent, particularly when dealing with more complex regulatory circuits. Firstly, the
more realistic regulatory functions may lead to the models both difficult to solve.
Additionally, a larger parametric space is harder to analyse, limiting their prac-
tical interpretation. Furthermore, our approach is suitable for a low number of
species that can be incorporated, which may oversimplify real biological systems,
where multiple interactions are the norm. Additionally, we employ a simplification
in the production rate by combining the rates for transcription and translation into
a single rate for protein synthesis. While this approach helps in a model construc-
tion, it potentially overlooks nuances between these stages that could be critical
in understanding gene expression dynamics fully. These limitations highlight areas
for potential refinement and suggest caution when applying our findings to more
complex biological scenarios.

Our near-future work plans and ideas are:
• Proceed with the study of negative feedback from the population perspective.

We already know that PBE in this case becomes the Heun equation, which we
expect to solve numerically.

• Continue study of the division mechanisms. Possible improvements are in-
corporation of partition noise (i.e., descendants inherit half of mother protein
molecules on average) and stochastic division conditions (e.g. the cell division
is randomly triggered, but after reaching a threshold volume).

• Study a more realistic positive feedback function, where a basal level of natural
protein degradation is included.

• Optimise simulations and transfer the simulation programs, especially those
for cell populations, to more computationally efficient programming languages
(e.g., Julia).
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Appendix A

Simulation algorithms

A1. Feed-forward loop

This section is aimed at verification of theoretical results obtained in Section 4.3.
This is done by constructing Algorithm 1, which simulates the process and calculates
the first two moments of mRNA and miRNA concentrations.

Referring to Section 4, a trajectory of X concentration in time interval [0, T ]

has a finite number of discontinuity points, which are due to the random producing
process B(t). Between bursts X decays deterministically as per dynamical system
(4.1).

Let us consider the process step by step. We define ∆ti as a waiting time after
the i-th burst bi until the next one; thereby the time of the next burst occurrence is
ti+1 = ti + ∆ti. The quantity ∆ti is drawn from the exponential distribution with
mean 1/λ; moreover, the size of the burst itself is also drawn from the exponential
distribution with mean β. Then, according to the theorem of average value, the
mean value of the piecewise continuous trajectory x(t) is given by

M1(X) =
1

T

N∑
i=0

X̄i, X̄i =

∫ ti+1

ti

x(t; bi) dt , (A.1)

where N is number of observed bursts, T is the total time of observation and equal
to
∑N

i=0∆ti. Also, despite that above we mainly appeal to X, the same is applied
to Y.

The functions of deterministic decay x(t) and y(t) are obtained by solving the
dynamical system (4.1). First, we obtain the solution of y(t) from the second equa-
tion (since it is separated and does not involve x(t)), next we substitute it into the
equation of x(t). Due to discontinuities caused by bursts, we denote by xi(t) and
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Algorithm 1 Simulation of the mRNA-miRNA interaction
Require: λ, β, δ;x0, y0;N
Ensure: M1(X),M2(X)

1: Draw U from the standard uniform distribution
2: b0 ← 0 ▷ no burst at the t = 0
3: ∆t0 ← − lnU/λ
4: Draw vectors U1, U2 of N independent random values from the standard uniform

distribution
5: for i← 1, N do
6: bi ← −β lnU1,i

7: ∆ti ← − 1
λ
lnU2,i

8: end for
9: for i← 1, N do

10: yi ← bi + yi−1e
−∆ti−1

11: xi ← bi + xi−1exp{−δyi−1(1− e−∆ti−1)}
12: X̄i, Ȳi ← as per (A.4) and (A.5)
13: X̄2

i , Ȳ
2
i ← as per (A.6)

14: end for
15: M1(X)←

∑
X̄i/

∑
∆ti

16: M2(X)←
∑
X̄2
i /
∑

∆ti

yi(t) the separate solutions on the each interval [ti, ti+1), which are the following:

xi(t) = x̂i exp
{
−δŷi(1− e−(t−ti))

}
, x̂i = xi−1(ti) + bi, (A.2)

yi(t) = ŷi e
−(t−ti), ŷi = yi−1(ti) + bi, (A.3)

where x̂i and ŷi are initial conditions for the solution on each interval ∆ti; clearly, x̂0
and ŷ0 are the pre-set concentrations at the beginning of observation at time t = 0.

Firstly, let us find X̄i terms by integrating (A.2) on ∆ti:

X̄i = x̂ie
−δŷi

∫ ti+1

ti

eae
−t

dt , a = δŷie
ti .

After performing a substitution u(t) = ae−t, the integral takes form of special func-
tion Ei(x) [105]. Its evaluating on the interval (u(ti);u(ti+1)) gives the terms X̄i in
(A.1):

X̄i = x̂i exp{−δŷi}
(
Ei(δŷi)− Ei(δŷie−∆ti)

)
. (A.4)

Subsequently, integrating (A.3) on each interval ∆ti yields the terms Ȳi of partial
sums for M1(Y ):

Ȳi = ŷi (1− e−∆ti). (A.5)
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Analogically, we define the second moments of x(t) and y(t) by

M2(X) =
1

T

N∑
i=0

X̄2
i , X̄2

i =

∫ ti+1

ti

(x(t; bi))
2 dt .

After repeating the same approach, we obtain the terms X̄2
i and Ȳ 2

i in form

X̄2
i = x̂2i exp{−2δŷi}

(
Ei(2δŷi)− Ei(2δŷie−∆ti)

)
,

Ȳ 2
i =

ŷ2i
2
(1− e−2∆ti).

(A.6)

Given that we know the piecewise deterministic behaviour of the trajectories,
the last missing ingredient is to find an appropriate method for generation random
values of ∆ti and bi. Since they both are drawn from the exponential distribution, we
choose the inverse transform method, which is simple, precise, and computationally
efficient [106].

Finally, the first and the second moments of X, obtained by executing the sim-
ulation algorithm, converge to values of corresponding analytical expressions (4.25)
and (4.27). As shown in Figure 4.3, a satisfactory number of bursts to observe
is N ≈ 105, after which the computational time significantly increases without a
notable gain in the accuracy of result.

A2. Positive feedback on dilution. Single cell and population

Let us start with the univariate model, where we simulate the time evolution of
the protein concentration in a single cell, in which the cell volume is not taken
into account. The corresponding mathematical model is described in Section 5.1.
Since the burst frequency and the mean size are from exponential distributions, we
generate them using the inverse transform technique [107]. It is done by sampling uα
and uβ from the standard uniform distribution U(0, 1) and using them as a value of
the corresponding exponential CDF. Then the random burst size b and the waiting
time until next burst ∆tα are following:

b = −β lnuβ, (A.7a)

∆tα = − 1

α
lnuα. (A.7b)

During a period of time after the burst at time t0 and until the next one, the protein
concentration decays from the level x0 as per (5.1), the solution of which is

x(t) =
1

k
W0

(
kx0e

kx0et0−t
)
, (A.8)

89



Algorithm 2 Simulation of the cell population
1: global c = (α, β, k)
2: require X = x0, T = 0, Tstop, population
3: ▷ Tstop is a simulation endpoint, population is an empty dataframe
4: function trajectory(c, x0, t0, t)
5: return intermediate X values during deterministic decay as per (A.8)
6: end function
7: function SCell(population , X, T )
8: create dataframe cell
9: while T < Tstop do

10: Generate uα, ue
11: Compute ∆tα, ∆te ▷ as per (A.7b) and (A.10)
12: if min(∆tα,∆te) = ∆tα then
13: bind trajectory(X, T, T +∆tα) to cell
14: X ← x(t0 = T, t = T +∆tα) ▷ as per (A.8)
15: X ← X + b ▷ as per (A.7a)
16: T ← T +∆tα
17: else
18: bind trajectory(X, T, T +∆te) to cell
19: X ← x(t0 = T, t = T +∆te)
20: T ← T +∆te
21: bind cell to population
22: population ← SCell(population , X, T )
23: population ← SCell(population , X, T ) break
24: end if
25: end while
26: end while
27: return population
28: end function
where W0(·) is the principal branch a special function called the Lambert W function
[108], which is by definition the function satisfying W (z)eW (z) = z as z > −1/e.

We proceed to a simulation of the cell population, in which each individual
performs independently yet identically to the single cell case above. Additional
complexity is brought by the division mechanism described in Section 2.5.

Firstly, we address an issue with defining the remaining existence time of the
cell until its division ∆te. As follows from (2.30), the division hazard rate γ(x(t))
is time-dependent, which means that each event at time t0 (either birth or burst)
affects the probability of the division during the period (t0, t0 +∆t) as follows:

Prob[te < t0 +∆te|te > t0] = 1− exp

{
−
∫ t0+∆te

t0

γ(x(te)) dte

}
, (A.9)

where x(t) is given by (A.8). To sample from this non-homogeneous exponential
distribution, we again use inverse transform technique: we generate a value ue from
U(0, 1) and use it as a value of the probability (A.9). After performing integration,
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Algorithm 3 Simulation of the bivariate single-cell model
1: global c = (α, β, k, v∗)
2: require X = x0, V = v0, T = 0, Tstop, cell
3: function trajectory(v0, x0, t0, t)
4: return intermediate values of X and V on the interval (t0, t) as per (A.11)
5: end function
6: while T < Tstop do
7: Compute ∆tα(uα), ∆te ▷ as per (A.7b) and (A.12)
8: if min(∆tα,∆te) = ∆tα then
9: bind trajectory(V,X, T, T +∆tα) to cell

10: V ← v(t0 = T, t = T +∆tα)
11: X ← x(t0 = T, t = T +∆tα) + b
12: T ← T +∆tα
13: else
14: bind trajectory(V,X, T, T +∆te) to cell
15: V ← v∗

16: X ← x(t0 = T, t = T +∆tα)
17: T ← T +∆te
18: end if
19: end while
20: end while
21: return cell
we obtain:

ue =
1

kx0
W (kx0e

kx0e−∆te),

which leads to the explicit expression of the waiting time until division:

∆te = kx0(1− ue)− lnue. (A.10)

Secondly, to imitate the population growth, we develop a recursive algorithm. Its
core function generates the time evolution of the protein concentration in a single
cell from birth until death. Specifically, after the birth and every next burst (if
it occurs), we generate candidate waiting periods for the division and the burst
(∆tα and ∆te). The minimal value in this pair defines which event comes next.
If min(∆tα,∆te) is ∆tα, then the burst occurs next, and the whole cycle repeats;
otherwise, the cell divides, and the core function calls itself twice, which corresponds
to the mother cell division into two daughter cells (see details in Algorithm 2).

We proceed to the bivariate model of a single cell described in Section 5.3. Its
simulation requires an explicit time-dependent function of the cell volume. We find
it using (5.36), integration of which leads to the fact that the cell volume is inversely
dependent on the protein concentration, i.e., v(t) = C/x(t). Given that at the time
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(a)  Population with PFB

analytical simulation with 14318 cells analytical simulation

(a) Single cell with NFB

Figure A.1: (a) Comparison of the analytical distributions (5.52)–(5.53) to the
results of a large-time kinetic Monte Carlo simulation with parameters α = 2,
β = 0.45, k = 0.7, v∗ = 1.5, T = 20, and initial conditions x0 = v0 = 2. (b)
Comparison of the analytical distribution (6.6) and one obtained using simulations
with parameters α = 5, β = 0.2, k = 1, a simulation endpoint T = 22.5, an initial
condition x0 = 1.

of the last event is t0, the concentration is x0 in the cell of volume v0, we obtain:

v(t) =
kx0 v0

W0 (kx0ekx0et0−t)
. (A.11)

Since the division occurs at the moment, when the cell reaches the critical volume
2v∗, then the waiting time until the division is:

∆te = kx0

(
1− v0

2v∗

)
− ln

v0
2v∗

, (A.12)

which is now the deterministic value in comparison with a univariate case (A.10),
where it is randomly drawn. The whole simulation approach is given in Algorithm
3.

The simulation algorithm of the bivariate population is essentially the same as
Algorithm 2. Yet it requires two changes: the first one is generating ∆te using
(A.12) instead of (A.10); the second one is storing volume trajectories V , which is
done by using lines 3-4, 9, 14 from Algorithm 3. We use this algorithm to prove our
results for stationary the protein and cell volume distributions (5.52)–(5.53). As it
is shown in Fig. A.1a, the results obtained from simulation are consistent with the
analytical formula.

A3. Negative feedback on dilution. Single cell and population

In the previous section, we constructed step by step the simulation algorithm for the
model with positive feedback on dilution. Modeling the negative feedback instead
of positive one does not alter the behavior and principal assumptions of the model.
Thus, in this chapter, we only derive functions of the protein trajectory x(t) and
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the waiting time until division ∆te for Algorithm 2 and Algorithm 3, so that they
simulate dynamics of the negative feedback loop.

The deterministic decay of the protein is governed by ODE:

ẋ = xγ(x),

where γ(x) is given by (6.1); the solution follows:

x(t) =

(
kW0

(
1

kx0
e1/kx0e−∆te

))−1

, x0 = x(t0), (A.13)

where t0 is the time of the last burst (for the single cell) or the last event (for
the population); W0(·) is the principal branch of the Lambert W function. Here,
the assumptions about burst size and frequency are identical to negative feedback
model. Thus, the burst size and the waiting time until the next burst are generated
using inverse transform sampling method (A.7a)–(A.7b).

The last thing we address is the waiting time until the next division, which
is required for the population simulation. After evaluating the integral (A.9), we
obtain:

ue =
1

kx0W0

(
1
kx0
e1/kx0e−∆te

) ,
from which follows:

∆te =
1− ue
kx0ue

− lnue. (A.14)

To support the result of the analytical approach (6.6), we use (A.13) instead of (A.8)
and ignore the volume component in Algorithm (3). Figure A.1b shows that the
resulting empirical density is in agreement with the analytical one.
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Appendix B

Moments analysis of the effects of

the feedback strength

In the main text, we focus on the steady-state distribution of the protein in single-
cell and population frameworks. In this appendix, we study the statistics (mean
concentration, protein noise, and skewness) as functions of feedback strength k,
with parameters α and β. In this appendix we also use subscripts to differentiate
the single-cell (SC) and population (Pop) statistics.

In the single cell, the protein distribution pSC(x) (5.9) has the existence condition
η > 0, from which it follows that k must be within the interval KSC = [0, 1/αβ), for
a given set of parameters (α, β, γ). We use (5.11) to derive the statistics of interest:

ESC(x) =
α

η
(1 + kβ), (B.1)

(CV2
x)SC =

1

α

(
1− 1 + α(

1 + 1
kβ

)2
)
, (B.2)

SkewSC(x) = 2
(α + 1− (ηβ)3)

(α + 1− (ηβ)2)3/2
. (B.3)

It is clear that as k approaches 1/αβ, in the expression (B.1), the mean value ESC(x)
diverges due to a singularity in the denominator (Fig. B.1B, green line). To explore
the behavior of the noise level (B.2) and skewness (B.3) on KSC , we use the first
derivative test. For the noise level, we find that ∂(CV2

x)SC
/
∂k < 0 meaning that

(CV2
x)SC is decreasing function of k within KSC (Fig. B.1D, green line). We also

use this approach for the skewness; its derivative is given by:

∂(Skewx)SC
∂k

=
3αβ2η(βη − 1)

(1 + α− (βη)2)5/2
, (B.4)

where the quadratic function in denominator is always positive (it is concave and its
two zeroes are not in KSC), then ∂(Skewx)SC/∂k < 0 for any k ∈ KSC . We obtain
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Figure B.1: Cell population is always noisier and more right-skewed
than a single cell, despite feedback intensity. (A.) Phase diagram of dis-
tribution existence. Red line represents increase of k keeping α=2 and the low
frequency α=0.5. (B.) Mean protein for high frequency and (C.) for low fre-
quency (D.). Protein noise for high frequency and (E.) for low frequency. (F.)
Protein Asymmetry for high frequency and (G.) for low frequency. On (B.)–
(G.) are shown statistics of single cell (green solid line) and population (brown
dash-dotted line) compared to unregulated case (blue horizontal dashed lines).
Parameters: β = 10, γ = 1.

that both (CV2
x)SC and (Skewx)SC are monotonically decreasing functions with local

maxima and minima are left and right endpoints of the interval KSC , respectively.
In particular:

lim
k→1/⟨x⟩

(CV2
x)SC =

1

α + 1
,

lim
k→1/⟨x⟩

(Skewx)SC =
2√
α + 1

.

In conclusion, for a given production flow αβ, the feedback of any strength reduces
protein noise at the single cell level (green lines in Figs. B.1D–B.1E) and makes the
distribution less skewed (green lines in Figs. B.1F–B.1G) compared to the unregu-
lated expression (blue horizontal lines in corresponding figures).

We perform similar approach for the statistics of the population framework:

EPop(x) = αβ
1 + kβ

1 + kβ − αβk
, (B.5)(

CV2
x

)
Pop

=
1

α

(
1 + k̃ − αk̃2

)
, (B.6)

SkewPop(x) = 2

√
1

α

1 + 2k̃ − 3αk̃2 + α2k̃3(
1 + k̃ − αk̃2

)3/2 , (B.7)

where k̃ = kβ/(1 + kβ) is an auxiliary constant. Now, the permissible interval of k
is KPop =

[
0, 1/β(α− 1)

)
, for α > 1 (the high frequency limit), and KPop = [0,∞),

95



for α < 1 (the low frequency limit). The behavior of mean, noise level, and skewness
differs in these two cases. In the low-frequency mode (α < 1), we obtain:

lim
k→∞

EPop(x) =
⟨x⟩

1− α
, (B.8)

lim
k→∞

(CV2
x)Pop =

β

⟨x⟩
(2− α), (B.9)

lim
k→∞

SkewPop(x) = 2

√
1

α

α2 − 3α + 3

(2− α)3/2
. (B.10)

Then the protein distribution in the population with the low transcriptional fre-
quency (α < 1) has higher, but always bounded statistics compared to unregulated
case. These behaviour is shown in the second row of Fig. B.1.

In high frequency mode (α > 1) as k reaches the right endpoint of KPop, the
mean EPop(x) diverges, but noise and skewness become identical to the unregulated
case:

lim
k→1/β(α−1))

(CV2
x)Pop = CV2

x, lim
k→1/β(α−1)

SkewPop(x) = Skew(x) (B.11)

which is shown in the first row of Fig. B.1.
The first derivative of the squared coefficient of variation,

∂(CV2
x)Pop

∂k
=

β

⟨x⟩
(1− 2α)kβ + 1

1 + kβ
,

has a single root at 1/(2α− 1)β, indicating that over the interval KPop, (CV2
x)Pop is

monotonically increasing if 2α < 1; otherwise, it is concave (Figs. B.1D–B.1E). The
first derivative test for skewness involves analysis of cubic equation, which was done
numerically. We conclude that the low frequency leads to SkewPop(x) > Skew(x)

on the whole interval KPop, maximum is reached within KSC (Fig. B.1G). The high
frequency leads to minor fluctuations of SkewPop(x) around Skew(x) with single
intersection within KPop (Fig. B.1F).

Overall, we use the statistics of the unregulated case as a critical points for
comparison both perspectives. We conclude that for given production rate αβ and
admissible values of k protein distribution in the population is always noisier and
more right skewed compared to the single-cell one.
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